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1 Introduction to the Project
1.1 Executive Summary
Self-pulsation is the term commonly used
to describe the pulsed emission from semi-
conductor laser diodes operated under DC
bias.[1] Self-pulsating lasers have the ad-
vantage that their short coherence length,
due to the pulsation, makes them less
sensitive to optical feedback and gives
them a low relative noise intensity[1, 2].
These features are important in the use
of semi-conductor lasers in Compact Disc
(CD) players and other optical storage
systems.[1]

The behaviour of these lasers can be de-
scribed using a rate equation model[1, 3].
It can be seen that, if a suitable sinusoidal
electrical modulation is added to the rate
equations the frequency of free-running
self-pulsations will become mode-locked to
the frequency of the modulation.[4] By
moving the modulation frequency away
from the natural resonant frequency of the
self-pulsation then the two frequencies can
be made to compete, resulting in chaotic
self-pulsation.[1]

In this paper we investigate the e�ects
of changing the electrical modulation fre-
quency applied to the laser, and the im-
pact it has on the chaotic pulsation of the
laser. We also investigate methods of dis-
cerning whether the laser is in fact pul-
sating chaotically using an auto-correlator
with a second harmonic generation crys-
tal.

We will be looking at the application of
the chaotic self-pulsation of the laser to
forms of hardware encryption in network

interfaces.

1.2 About the Group
1.2.1 Luke Pomfrey
Luke Pomfrey contributed to the pro-
gramming of the laser models, and cre-
ated the Fortran and C++ models, which
were later scrapped due to the restric-
tive amount of time that would have been
needed to implement functionality in them
that was already present in theMathemat-
ica and Matlab environments.
As the group secretary and resident

TEXnician he was responsible for author-
ing agenda and minutes for the meetings,
as well as presentations and this docu-
ment. He authored the content of the
introductory sections on encryption here
(2.1.1 and 2.1.2) and co-authored the sec-
tion on the operational theory of the lasers
used (2.2.1).

1.2.2 Mohammed Moussa
Mohammed Moussa worked on imple-
menting the computer simulation of the
laser, more speci�cally the Matlab ver-
sion. He researched mathematical tech-
niques for solving coupled di�erential
equations before writing a fourth-order
Runge-Kutta algorithm implementation
in Matlab. He cooperated with G.
Weerasinghe, who worked on the Math-
ematica model, to analyze and compare
both their models.
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M. Moussa contributed to sections ??
and 2.5 of this document.

1.2.3 Alexander Shalashilin
Alex Shalashilin, having previously
worked with the demonstrator Stephen
Lynch in a similar optical experiment,
was to be responsible for the construction
of the apparatus. Having composed the
equipment list and done research on the
required components, he passed this to
Canice Wai Tou and provided consul-
tation while he drew the diagram, and
afterwards assisted Wai Cheong Tou and
Gihan Weerasinghe and to disassemble a
CD-ROM to obtain the laser diode. Alex
also helped to plan the presentation and
composed the critical evaluation of the
group.

Alex was the creator of section 2.3 of
this document.

1.2.4 Philip Smith
Philip Smith carried out research into the
second harmonic generation and opera-
tional theory of lasers. He authored sec-
tion 2.2.3 and co-authored section 2.2.1.

1.2.5 Wai Cheong Tou
Wai Cheong Tou was chosen as the chair
of the meetings, he organized locations for
each board meeting, and was responsible
for coordinating the �ow during the meet-
ings. He researched into the feasibility of
using lasers driven into chaos as method of
data encryption, and recorded how this so-
lution was investigated by the group. He
cooperated with A. Shalashilin in collat-
ing the equipment list required for build-
ing the intensity autocorrelator, and, with
his graphical background, he produced the

scaled graphical diagram of the autocorre-
lator(Fig. 2.16) which was used for refer-
ence and for the �nal presentation. Tou
also worked together with A. Shalashilin
to obtain the self-pulsating laser diode
which is later used to build a simple model
to demonstrate chaotic pulsation for pre-
sentation purpose by Tou and G. Weeras-
inghe.
W. Tou contributed to the report with

sections 2.1.4 and 2.1.5.

1.2.6 Gihan Weerasinghe
Gihan Weerasinghe programmed and doc-
umented a simulation in Mathematica to
model the self and chaotic pulsations of a
semiconducting laser diode. He was also
responsible for ensuring the �nal report
met all the required criteria and prepared
a basic structure to adhere to. In addition
to this he contributed two additional doc-
uments for the report on chaotic systems
and autocorrelators.
Gihan Weerasinghe contributed to sec-

tions 2.1.3, and 2.2.2 of this document.
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2 Investigation report
2.1 Introduction
2.1.1 Current methods of data

encryption and the
di�erences between
hardware & software
based encryption

Author: L. Pomfrey

Current methods for encrypting
network tra�c
Current encryption methods for computer
network tra�c are generally digital en-
cryption methods. These methods tend
to be performed by software applications,
this can be performed transparently to the
user (as in TLS/SSL) or require user ac-
tion (as in PGP/GPG). Applications of
analogue network encryption can be found
in analogue satellite and cable subscriber
television systems, but these have largely
been phased out with the advent of digi-
tal television. The prevalence in the mid-
to late-1990's of pirate cable and satellite
decoders was a testament to the insecurity
of these systems.

In this section we will discuss the basics
of two popular digital encryption systems
performed in software;

1. Transport Layer Security (TLS) (and
it's predecessor; Secure Sockets Layer
(SSL))

2. Pretty Good Privacy (PGP) (and
it's Free/Libre Open Source Software

(FLOSS) implementation; GPG)

Many articles on encryption in computing
can be found at [5] and in numerous text-
books and other references, as such, this
will not be a comprehensive guide to cur-
rent methods of encryption or indeed to
the various methods of cryptography em-
ployed.

TLS/SSL: Probably the most well
known (and, for all intensive purposes,
the most widely used) methods of encryp-
tion for network tra�c at the moment
are the Transport Layer Security (TLS)
protocol and it's predecessor, the Secure
Sockets Layer (SSL) protocol. These are
used heavily for the encryption of web
(HTTP) tra�c (e.g. on e-commerce and
on-line banking websites) and for the
security of e-mail authentication.
SSL and TLS are, for a substantial part

of their mechanism, essentially the same
protocol. TLS, however, �xes some of the
inadequacies in the SSL protocol. They
operate on a public/private key pair prin-
ciple (known as asymmetric cryptography
or public-key cryptography), thus, the se-
curity of the system is limited by the size
of the keys involved and the speci�c algo-
rithm used to generate the key pair. Short
keys and insecure algorithms can signif-
icantly increase the possibility of brute
force attacks on encrypted data being suc-
cessful.
More information on TLS can be found

at the Internet Engineering Task Force's
TLS Status Pages.[6]
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PGP/GPG: Pretty Good Privacy
(PGP), and it's FLOSS implementa-
tion; GNU Privacy Guard (GPG), are
applications providing both privacy
and authentication for users. As with
TLS/SSL, PGP/GPG is a form of public-
key, or asymmetric, cryptography. As
such, it is also vulnerable if a short key
and/or insecure algorithm are used for
key generation.

PGP/GPG can be used simply for au-
thentication (i.e. ensuring that the mes-
sage you have received is from who it pur-
ports to be from) by signing messages and
�les, or for full encryption of information.

Unlike TLS/SSL, PGP/GPG isn't
transparent to the user. It generally re-
quires the user to consciously sign/encrypt
any �les and/or messages to be sent over
the network. This can cause a security
risk if the user forgets to encrypt some-
thing before sending it.

More information on PGP/GPG can be
found at the GnuPG website [7] and in the
OpenPGP RFC speci�cation [8].

The di�erence between hardware &
software encryption
When attempting to encrypt network traf-
�c there are two approaches that one
can take, encrypting in hardware and
encrypting in software. The examples
of TLS/SSL and PGP/GPG given above
are both software based encryption tech-
niques.

Hardware and software encryption
methods both have pros and cons com-
pared to the other. Software based en-
cryption is inherently digital in nature and
thus generally can't take advantage of the
same kind of chaotic processes that hard-
ware based encryption can. Hardware
encryption, however, requires additional
hardware than that which is present in

�stock� computers.
Taking the approach that encryption re-

quires the generation of random numbers
allows us to look at the mechanisms used
in both hardware and software methods.
Hardware based random number gen-

eration generally utilises input from ran-
dom processes such as radioactive decay,
or thermal noise in semi-conductor com-
ponents. These methods allow hardware
based encryption to generate highly ran-
dom numbers. The output from hardware
based random numbers can then be digi-
tised (which can reduce the randomness
of the numbers) or left as an analogue
signal, depending on the required usage.
Whilst some methods of generating ran-
dom numbers in hardware are, in a way,
predictable they generally have a much
higher degree of randomness than those
generated in software.
Software methods of random number

generation generally rely on the use of
algorithms to create pseudorandom num-
bers. These are not strictly random num-
bers but are simply sequences of num-
bers that �appear� to be random. There
are many methods for generating random
numbers, for example on GNU/Linux
and other UNIX -like operating systems
the �special-�le� /dev/random holds an
�entropy pool� of environment data and
hashes are used to generate pseudo-
random numbers from this. The gener-
ation of pseudorandom numbers in soft-
ware, and their limitations, is covered in-
depth in [9].

2.1.2 The bene�ts of chaotic
analogue encryption

Author: L. Pomfrey

The obvious bene�t from analogue en-
cryption is that unlike digital encryption,

7



PHAS3441 : Group Projects Group 7 March 2008

(a) Noise carrier signal (b) Binary data signal (c) Data signal + Noise sig-
nal

Figure 2.1: A graphical example of the addition of a data signal to random noise
showing the noise-like output waveform
Created by L. Pomfrey

where the values an encryption �key� can
take are discreet in nature, the values a
�key� can take are continuous in nature.
This means there are in theory there are
an unlimited number of encryption �keys�
possible.

By using chaotic data as a carrier for
an encrypted data stream (see section
2.1.3) we essentially bury the data in ran-
dom noise, this means that not only will
the data be encrypted incredibly securely
(since, in order to decrypt the signal,
the attacker will be required to create a
chaotic signal identical to our carrier) but
at a glance it will just look like white noise.
Fig. 2.1 shows a graphical example of this,
the random-looking nature of the chaotic
carrier wave and the binary data signal
combined is easily seen.

2.1.3 Chaotic systems and the
application of chaotic
systems to data transfer

Author: G. Weerasighe

The word �chaos� is de�ned as a system
which exhibits �complete disorder�, math-
ematically it is a feature of non-linear sys-
tems that are extremely sensitive to in-

put conditions. It is usually associated
with undesirable events, such as earth-
quakes, hurricanes and terrorist attacks.
The chaos involved in these cases is largely
a description of the consequences rather
than the event itself. In each case, there is
a momentary breakdown of civil law which
leads to confusion and disorder or, in other
words, the de�nition of chaos.
In physics, chaotic behaviour of a sys-

tem has much in common with real world
chaos, however, it is more appropriate to
describe such a chaotic system as �a sys-
tem which is completely unpredictable�. It
is hard to imagine any desirable applica-
tion of chaos and, in most cases, chaos in
any physical system is highly undesirable.
However, the properties of chaotic systems
happen to be ideally suited for one poten-
tial future application, and that is in se-
cure data transmission.
When a DC bias current is applied to

a semi-conducting laser diode, the result
is self-pulsation.[1] The rate at which the
laser pulses light is dependent on the ap-
plied current and the properties of the par-
ticular semi-conductor. The frequency of
these pulsations is constant provided the
current is DC. The frequency of the pulsa-
tions for a DC current is the natural fre-
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quency of the laser. The behaviour of a
laser diode changes if an alternating cur-
rent is applied. If the alternating cur-
rent is applied such that it's frequency is
su�ciently di�erent from the natural fre-
quency of the laser, it is possible to make
the laser diode pulse chaotically.[1]

Chaotic synchronisation
A common way to transmit information
is to use a carrier signal which is modu-
lated by the data. Two methods are am-
plitude modulation and frequency modu-
lation. In each case, either the amplitude
or frequency of the carrier signal changes
according to the data signal. At the re-
ceiving end, the carrier wave is extracted
from the signal, leaving the data remain-
ing. An example of a typical amplitude
modulation is shown in Figure 2.2.

Chaotic carrier signals are potentially
ideal for encrypting data. The chaotic
signal is used, as before, as a carrier
which is modulated by the data. How-
ever, since the carrier signal is completely
unpredictable, it is impossible to inter-
cept and extract the data, since the carrier
signal cannot be distinguished from the
modulated data by the interceptor. The
data is therefore secured. Figure 2.1 il-
lustrates data modulation using a chaotic
carrier signal. It is, however, not imme-
diately obvious how these chaotic pulsa-
tions could be feasibly used for data trans-
mission. The transmission and receiving
of data would require two diodes; one to
transmit the data, and one to receive the
data. The transmitting laser diode will
transmit the chaotic carrier signal modu-
lated by the data. At the receiving end, a
photodiode will receive the same chaotic
signal modulated by the data. However,
the carrier signal cannot be removed since
it again cannot be identi�ed. The solu-

tion to this problem exploits a phenomena
known as chaos synchronisation. If a sec-
ond laser diode is introduced into the sys-
tem at the receiving end and is driven by
the chaotic output from the transmitting
diode, then the transmitted chaos is per-
fectly replicated in the receiving diode. In
other words, the chaos in both diodes syn-
chronises. What is key to the data trans-
mission is that only the chaotic signal from
the transmitting laser diode is replicated
in the second receiving laser diode.[10]
Since only the chaos is replicated at

the receiving diode, it is possible to di-
vide the chaotic signal out from the to-
tal signal at the receiving end which con-
sists of the chaos and data product. Once
this has been achieved, only the data re-
mains at the receiving end, and thus the
data has been successfully, and securely,
transmitted. There are some conditions
on the choice of semi conducting lasers
for this �send and receive� construction,
the most important of which is the sim-
ilarity of the transmitting and receiving
diodes. A small di�erence between the
atomic properties of the transmitting and
receiving diode (such as defects), would
yield a large di�erence in the two di�er-
ent chaotic pulsations, in other words, it
would not be possible to synchronise the
chaos from the two lasers. For this rea-
son, the two diodes need to be chosen from
very close points on the wafer from which
they are taken. In this way, the atomic
properties of the diodes will be su�ciently
similar. The similarity conditions of the
diodes further secures the data transmis-
sion, since an interceptor would not be
able to introduce an arbitrary laser diode
into the transmission line, drive that diode
into chaos, and essentially replicate what
happens at the receiving end to cipher the
data.
Other references: [11, 12, ?]
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(a) Digital data (b) Carrier signal

(c) Signal + data

Figure 2.2: An example of the use of typical amplitude modulation for data transfer.
Created by G. Weerasinghe.
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2.1.4 Feasibility of the
proposed solution

Author: W. Tou

Unprotected data exchanged or stored
at a company may reveal con�dential in-
formation to unauthorized users, internal
and external. Businesses need a way to
exchange secure data with branch o�ces,
vendors, and business partners to stay
competitive and protected.

As previous chapters have mentioned,
our team's proposed solution is to use
chaotic optical pulses to encrypt signal for
data protection, this has one big advan-
tage, the encryption itself is done with
an analogue system, most existing secu-
rity systems today is done digitally, with
digital signals, there can only be two kinds
of output, 1 and 0, whereas for analogue,
the signal is continuous, this makes it a lot
harder to decipher thus providing more se-
curity.

Another advantage is the simplicity of
the system, it doesn't require any par-
ticularly advanced equipment, a simple
cheap CD laser diode1 from a compact
disc player would be su�cient to produce
the input signal, the only other piece of
equipment in a production system would
be a commonly available network interface
card, this is discussed in the next para-
graph.

In terms of price of production, how will
we put our concept into practice outside
the lab? The initial product cost to con-
sumers would be high in order to cover the
research and development costs (a look at
Table 2.3 shows the price of the equip-
ment needed for the initial research on the
laser), a high retail price will directly af-
fect sales and could mean that this prod-
uct simply wouldn't sell. We can see that
once in production the cost to the con-

sumer would fall by looking at previous
cases of technological advances. For ex-
ample, the compact laser diode, which is
widely used in a typical CD player to-
day, cost scientists thousands of dollars to
build, but after it became commercialized,
and with engineers working and reducing
its production cost, after a few years, with
consideration of economies of scale, its'
production cost has dropped to below a
dollar each. From this we can predict that
the same can be expected from our prod-
uct.
Current tools for data encryption are

mostly computer software, their price
range from free to hundreds of pounds,
their encryption key size are from 56, 128,
192, 256 bits etc. This method of data en-
cryption is used on computers all around
the world, the larger the bit size, the
longer it will take for a computer to de-
code, the idea of encryption is to make it
so complicated to decipher the data, that
it can put o� crackers from trying to steal
the data.
This software method is e�ective, but

it isn't unsolvable, as it is reliant on an
encryption key, which only takes a matter
of time to obtain, but for our system, there
is simply no key or pattern to a chaotic
signal.
Our method of encrypting is currently

unsolvable, that's because this is a new
idea, if this were to be released commer-
cially, it will soon have people attempting
to crack it; no encryption is ever going
to be 100% secure. Let's assume that it
is one day cracked, our whole system will
all become scrap over-night, as it is not a
scalable system, if it is a normal software
encryption, they would simply increase its
bit count, whereas for our hardware sys-
tem, once they have crack it, would there
be an existing solution to upgrade it? Or
will It just become totally useless? In this
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sense, software encryption would indeed
have a much longer lifetime.

The big advantage of software encryp-
tion tools is that its reproduction cost is
next to zero, as it is simply computer soft-
ware which can be copied as many times
as you like, and printing it onto a CD is
an almost costless process when doing it
with the right machinery.

Whereas for our encryption tool, it isn't
software, instead it is hardware; it needs
to be manually installed into an existing
�ber optic cable system, which each set
of tool will protect data transfer between
two points, for example A and B. This can
be a major disadvantage to our product,
because in order to transfer data from ei-
ther point A or B to a third party (e.g.
point C). An additional set of tool will
need to be installed in between A-C and
B-C data point, this could be time con-
suming and would increase the total setup
cost. Therefore this product could poten-
tially put o� companies which regular up-
dates their network infrastructure. This
will be a major factor when considering
the cost of implementing the system, and
should be considered at later stages.

As fore mentioned, our product is hard-
ware, which will have an advantage over
software as it doesn't use RAM or pro-
cessor power on a computer, it will run
faster and better than any software en-
cryption tools, but the same goes to most
hardware, it can age, and may will require
regular maintenance and repairs.

All these factors a�ect whether this
product is worth commercializing, and
would de�nitely need to be analyzed be-
fore it leaves the lab.

2.1.5 How we will implement
the proposed solution

Author: W. Tou

The investigation of the proposed so-
lution of building an intensity auto-
correlator to generate and measure chaotic
optical pulses from compact disc laser
diodes, �rst we looked at various research
papers about auto-correlation to get a ba-
sic idea of how the laser will behave inside
an auto-correlator, and the equipment we
would need etc.
Next we split the task between com-

puter modeling, research, equipment list
and producing graphics.

Computer modelling

M. Moussa, L. Pomfrey, and G. Weeras-
inghe

In order to make prediction about the
pulsing of the laser under autocorrelation,
a computer programs is the ideal tool to
test our theories, with the model, we will
be able to make predictions on the behav-
ior of the laser under autocorrelation, we
can also use it to investigate how data is
transmitted via optical data encryption.
The computer modeling was created us-

ing various programming languages: Mat-
Lab, C++, Fortran, and Mathematica (al-
though the Fortran and C++ models were
later scrapped due to the amount of time
that would be needed to implement the
functionality lready found natively in For-
tran and Mathematica in them). The rea-
son why we used a number of languages to
analyze this solution, is because we wish
to analyze which programming method
will be most suitable for our project.

12
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Research
L. Pomfrey, P. Smith, W. Tou, and G.
Weerasinghe

Continual research took place to collect
information on chaotic pulsation, second
harmonic generation and auto-correlation.
The proposal was analyzed to examine the
feasibility of the purposed solution, look-
ing at whether this is practical economi-
cally and industrially.

Equipment research & pricing and
construction planning
A. Shalashilin, and W. Tou

In preparation to build the system,
the experimental setup was analyzed and
compiled into an equipment check list for
the auto-correlation experiment. Web-
sites such as Thorlab and Newport were
visited to collect information about our
equipment. From this, a budget proposal
was produced, and this leads to the de-
tailed construction plan to show how the
auto-correlator will be built.

To help explain the building process
and for presentation of our project, a de-
tailed diagram was required, experiment
the basic setup of the autocorrelator was
analyzed to produce a scaled diagram of
the experiment, this diagram is mainly
used for building, reference and for vari-
ous meetings and presentations.

With all of the above tasks completed,
we were able to procure a detailed plan
showing how the autocorrelator will be
built, predictions of our results is done
with our computer simulations. For ex-
ample, we can predict how a laser from a
compact disc laser diode will behave under
autocorrelation.

Next, we planned out our presentation,

we needed a simple and e�ective way to
communicate to our audience about how
we can use a laser driven into chaos can be
used for data protection, G. Weerasinghe
and W. Tou decided that it is best to be
done using a simple physical model which
can be used to demonstrate how the laser
is driven into chaos. So W. Tou and A.
Shalashilin extracted a self pulsating laser
diode from a typical compact disc drive
from personal computers.

2.2 Technical information
2.2.1 The operation and theory

behind the laser
Authors: L. Pomfrey and P. Smith

The purpose of the experiment is to see
how a laser diode from a CD player can be
driven into chaos. The usefulness of this is
that another signal can be masked by the
chaos, as can be seen in Fig. 2.1. It has
been shown that phase-locking two lasers
together allows for the chaotic signal to be
removed and the original signal retrieved.
This has been conducted using a master
laser driven into chaos which then phase-
locks a slave laser.[13] We will discuss the
rate equations which will model the be-
havior of a self-pulsating laser diode and
how the laser will be driven into chaos.
For this laser we are assuming it is a two

level system. The rate equations are used
to describe the population densities of the
charge carriers in a laser. The laser diode
or semi-conductor laser is essentially a p-
n junction with cleaved edges that act as
re�ecting surfaces which supply the cav-
ity feedback. A semi-conductor has two
bands, a valence band and a conduction
band with a forbidden space between them
called the band gap. An amount of energy
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.3: A series of photographs documenting the removal of the laser from a
Compact Disc player in the lab. 2.3h shows the actual laser canister next to the lens
normally mounted above it.
Created by W. Tou.
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Figure 2.4: Schematic diagram showing the structure of a real CD laser.[11]
Created by, and used with permission of, S. Lynch.

equal to the band gap needs to be added
for an electron in the valence band to jump
to the conduction band. In transitions be-
tween the bands photons will be emitted
and under the right inversion conditions
of the 2 levels lasing will occur.

Semi-conductors can be doped such
that there are a small amount of impu-
rities in the materials that make it up.
These impurities can lead to there be-
ing electron gaps (�holes�) act as positive
charge carriers. This is a p-type semi-
conductor. The impurities can also lead to
there being extra electrons with no space
in an outer electron shell for them. This
is an n-type semi-conductor. For instance
Gallium Arsenide (GaAs) can be doped
with Zinc. The Zinc with two outer shells
replaces the Gallium with three outer
shells and is a p-type material. Doping

with Selenium (with six-outer shells) re-
places the Arsenide (with �ve outer elec-
trons) this means there are extra elec-
trons in the lattice without spaces in
electron clouds. This causes them to
act as negative charge carriers. Placing
together pieces of n- and p-type semi-
conductor creates a p-n junction. A volt-
age source drives the positive and nega-
tive charge carriers towards the junction.
Laser diodes are forward biased p-n junc-
tions.
Fig. 2.4 shows a schematic of a CD-

laser.

Recombination of carriers and the
generation of light

When an excited electron returns to it's
ground state it releases a photon of light,
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C-Band

V-Band

2

1

(a) Radiative recombina-
tion

C-Band

V-Band

3

1

2

(b) Non-radiative recombi-
nation

C-Band

V-Band

1

2

3

4

(c) Auger recombination

Figure 2.5: Illustration showing possible recombination processes in a semi-conductor
on a simple band diagram.[11] 2.5a shows the radiative recombination process, this
requires a vertical transition in k-space. 2.5b shows the processes of defect and surface
recombination. These occur when an electron falls into a defect or surface level in the
band gap and recombines non-radiatively from there. 2.5c shows the two-body Auger
recombination process. There are many permutations of this process, denoted by the
initial and �nal energy states. 2.5c depicts the CCCH process, which involves three
electron states and one heavy hole state. In this example, two electrons collide in the
conduction band. One of the electrons is excited into the valence band while the other
is excited higher into the conduction band, where it eventually thermalises back down
to the bottom of the conduction band, releasing the excess energy as heat.[11]
Created by L. Pomfrey.
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with a frequency, ν, given by (2.1).

ν =
E

h
(2.1)

The process of radiative transition is es-
sential to the created of light photons in
semiconductors.[11] In this section we will
discuss how this process is harnessed to
cause light ampli�cation and lasing.

The rate of change of the number of
carriers in an electrically pumped semi-
conductor will depend on the input rate
of carriers by electrical pumping and the
rate of loss of carriers to the recombina-
tion processes shown in Fig. 2.5. This
can be summarised mathematically, as in
(2.2).

dN

dt
= Rgen −Rrec =

J

eV
−Rrec (2.2)

Where e is the electronic charge, V the
active region volume, J the magnitude of
the pumping current, Rgen the carrier gen-
eration rate, and Rrec the recombination
rate.[11] The recombination rate can be
written in terms of components as in (2.3).

Rrec = Rsp + Rnr + Rl + Rst

=
N

τ(N)
+ Rst

(2.3)

Where we have the rate of carrier recombi-
nation giving spontaneous emission, Rsp,
the rate of non-radiative carrier recombi-
nation, Rnr, the carrier leakage rate, Rl,
and the rate of carrier recombination giv-
ing stimulated emission, Rst. The term
relating to the rate of stimulated emis-
sion is the most important one for lasing.
Since we are most interested in this term
we can lump the other carrier recombi-
nation terms together and rewrite them
in terms of the carrier density, N , and
a time-constant, τ(N). This can be de-
scribed by a power series in N , as shown

in (2.4).[11]

N

τ(N)
= AN + BN2 + CN3 (2.4)

Fig. 2.5 shows some of these recombina-
tion processes. The AN and CN3 terms
deal with non-radiative recombination (by
the processes described by Fig. 2.5b and
Fig. 2.5c respectively), and the BN2

term deals with radiative recombination
(as shown in Fig. 2.5a.)
We can now gather all of the recombi-

nations rates into the simple rate equation
in (2.5). We can now also describe the
rate at which photons are generated as in
(2.6).[11]

dN

dt
=

J

eV
− N

τ(N)
−Rst (2.5)

dP

dt
= ΓRst + ΓβspRsp − P

τP
(2.6)

Here, Γ is a pre-factor that takes into ac-
count the di�erence that the cavity vol-
ume (which the photons occupy) is larger
than the active region volume. The last
term is the rate of removal of photons from
the cavity, this is de�ned in a way similar
to the carrier recombination rate in (2.5)
for the time being. βsp is the reciprocal of
the number of optical modes in the band-
width of the spontaneous emission. Rsp is
the rate of spontaneous emission.

Linear gain approximation and the
generation of laser light
For the modeling of the behavior of a laser
diode, several assumptions and approxi-
mations have to be made. The gain is ap-
proximated to be linear[2] with the carrier
density N . In a real device the gain would
vary with the carrier density. This linear
approximation is made to avoid having to
make the complication of performing the
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Figure 2.6: Illustration showing the linear gain approximation. Plotted on the graph
is the peak gain as a function of carrier density.[11]
Created by L. Pomfrey.

full gain calculation. For a bulk active re-
gion the approximation G = g(N − N0)
is used. At �rst in a real laser the gain
is linear with increasing density of states
but then saturates.

Another part of this approximation is
that the non-linear term of the gain is ig-
nored. It is argued that it is required for a
full description of the behavior of a semi-
conductor laser.[3] This is because at high
light intensities the gain saturates however
for the purpose of this model only the lin-
ear approximation shall be used. The co-
e�cient g is called the di�erential gain and
corresponds to the gradient of the line.
This has been shown to be a good approx-
imation for the siuation where undoped or
slightly doped GaAs is used as the mate-
rial of the semi-conductor laser. N0 is the
crossing point of the linear approximation
of the gain corresponding to transparency.

This approximation allows us to rewrite
(2.5) and (2.6) as (2.7) and (2.8) respec-
tively.

dN

dt
=

J

eV
− N

τ(N)
− vgpGP (2.7)

dP

dt
= Γvgp + ΓβspBN2 − P

τP
(2.8)

Where G is the gain and vgp is the group
velocity.

Other modi�cations that must be made
when dealing with a real CD laser and
the �nal rate equations
Other adaptations that are required for
the rate equations to model a real laser are
for the spreading of the injection current
from the contact plate as it travels down
to the microchip at the base of the device
(as is apparent when considering Fig. 2.4).
This means that only some of the active
region receives current. The optical mode
is larger than this and therefore overlaps
with some unbiased active region. In the
unbiased region photons will be converted
back into carriers. This is the opposite of
the lasing process and must be taken into
account in the form of a second rate equa-
tion for the charge carriers. This is consid-
ered as a negative gain. The photon den-
sity in the active region is taken to be uni-
form and the photon and carrier densities
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have been averaged over the length of the
device to make the calculation tractable.

We can now derive the three rate equa-
tions for the model. These have a
similar form to the rate equations used
by Yamada to model a semi-conductor
laser.[3][11]

dN1

dt
=

J

eV
− N1

τ(N1)
− N1 −N2

τ12

− Γ1vgpg1 |(N1 −N01)|P (2.9a)

dN2

dt
= − N2

τ(N2)
− N2 −N1

τ21

+ Γ2vgpg2 |(N2 −N02)|P (2.9b)

dP

dt
= vgp [Γ1g1 |(N1 −N01)|
−Γ2g2 |(N2 −N02)| − α]P

+ βBN2
1 (2.9c)

τNi =
(
A + BNi + CN2

i

)−1 (2.10)
(2.9a) and (2.9b) deal with the rate of
change of charge carriers in the gain re-
gion (denoted 1) and absorbing region
(denoted 2) respectively. (2.9c) governs
the rate at which photons are generated.
Terms of the form (Ni−Nj)/τij deal with
the di�usion of carriers from one region to
the other. The forms of the gain, G for
regions 1 and 2 have been substituted for
their respective equations. The prefactor
Γ1 is the fractional overlap of the optical
mode with the gain region. Γ2 is the frac-
tional overlap of optical mode with the ab-
sorbing region. In (2.9c), α is the waveg-
uide/mirror loss. β is the spontaneous
emission factor, which has combined the
Γ and βsp terms from (2.8). (2.10) gives
the carrier lifetime.

Some typical values of the terms in the
rate equations, and their meanings, are
given in Table 2.1.

Causing chaotic pulsations in the laser
For a real device a laser can be driven into
chaotic behavior under certain conditions.
Modelling this using the rate equations in-
volves adding terms to the rate equations
such that the pulsed output will becomes
chaotic with time. This represents an ad-
ditional electrical modulation to the laser.
In general the natural frequency of the free
running self-pulsations will lock to the fre-
quency of the applied signal. If, however,
the external frequency is too far away from
the natural resonant frequency, the signals
will compete and result in chaotic pulsa-
tion.
This external electrical modulation

comes in the form of varying the DC cur-
rent with a signal generator. The constant
current will become sinusoidal, modifying
(2.9a) to include this results in 2.11).

dN1

dt
=

J0 sin(ωet)
eV

− N1

τ(N1)
− N1 −N2

τ12

− Γ1vgpg1 |(N1 −N01)|P (2.11)

Where J0 is the amplitude of the varying
current, and ωe is the angular freuency of
the modulation.
Varying the value of the external

frequency and seeing how the auto-
correlation function changes allows us
to determine when the pulses become
chaotic. Inhomogeneous current injection
has been previously used to investigate
the bistability and pulsations of a semi-
conductor laser and how they vary with
the current injection.[2]
Other ways to cause a semi-conductor

laser to become chaotic are through op-
tical injection, optical feedback and op-
toelectronic feedback.[14, 15] These have
been investigated before as methods for
causing chaotic pulsation. These have
been used in investigating chaotic syn-
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Parameter name Symbol Nominal value
Electronic charge e 1.6× 10−19 C
Active region volume V 7.2× 10−11 cm3

Non-radiative coe�cient A 1× 108 s−1

Radiative coe�cient B 3× 10−10cm3s−1

Auger coe�cient C 7× 10−29 cm6s−1

Di�usion time, region 1 → 2 τ12 1.5× 10−9 s−1

Di�usion time, region 2 → 1 τ21 2.5× 10−9 s−1

Overlap region 1 Γ1 0.1
Overlap region 2 Γ2 0.2
Transparency density region 1 N01 1.2× 1018 cm−3

Transparency density region 2 N02 1× 1018 cm−3

Group velocity vgp 7.5× 109 cms−1

Di�erential absorption/gain coe�cient region 1 g1
3.08×10−6

vgp
cm2

Di�erential absorption/gain coe�cient region 2 g2 4g1 cm2

Waveguide/mirror losses α 10 cm−1

Spontaneous emission factor β 1× 10−5

Stepsize ∆ 5× 10−13 s−1

Bias current J0 variable A

Table 2.1: List of parameters and their nominal values for the CD laser model.[11]
Created by L. Pomfrey.

Light sourceLaser diode
Out

(a) Injection

Laser diode
Out

(b) Feedback

Figure 2.7: Possible methods for causing chaotic pusation in lasers. 2.7a shows optical
injection using an external light source, whilst 2.7b shows feedback from an external
cavity mirror.
Created by L. Pomfrey and P. Smith
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chronization of two lasers for secure com-
munications.

These methods di�er from modulating
the injection drive current by using op-
tical perturbations. They are similar to
the electrical modulation in that the ex-
ternal signal locks the diode laser to its
frequency. The two conditions for exter-
nal locking to work for optical injection
are that the detuning of the external fre-
quency and that of the natural resonant
frequency of the laser diode must not be
too large and the injected power has to be
su�ciently large. However, it requires an
external light source to act as the locking
signal.

The optical feedback method involves
using an external cavity mirror which
causes optical feedback and induces chaos
in the laser diode.[16]

For a small device meant for mass pro-
duction as a solution for secure communi-
cations, electrical modulation is the best
way to cause a laser to pulse chaoti-
cally. Optical injection and optical feed-
back methods are useful in a laboratory
experiment but require precision lining up
of a laser device or external cavity wall be-
hind the laser diode.

2.2.2 The auto-correlator
Author: G. Weerasinghe

Lasers can be made to pulse light typi-
cally with durations between nanoseconds
(ns) and femtoseconds (fs). To the naked
eye, these pulses are so fast, that they
naturally appear as a continuous stream
of light. Photodiodes are also inadequate
for resolving such fast pulses. A standard
method for measuring fast light pulses
is to perform an intensity auto- correla-
tion. The technique of auto-correlation is
to pass the incident light pulses through

a beam splitter, creating two identical
copies of the incident pulsed light. One
copy of the light directly enters a second
harmonic generation (SHG) crystal (see
section 2.2.3). The second copy traverses
a variable path, such that a path di�erence
is created between the two beams before
entering the SHG crystal.
The function of the SHG crystal is to

recombine the two beams creating a single
beam with an intensity proportional to the
product of the two intensities. When the
two beams have been combined, it is then
possible to determine how well they ��t�
with each other (correlate). Due to the
non-linearity of the SHG crystal, the e�ect
of combining the two separate beams will
also double the frequency.
Given the output photons from the

SHG crystal will have twice the incident
frequency, the Planck energy law insists
that light emerging from the SHG crystal
must consequently have twice the energy
per photon than the incident light. For
energy to be conserved, this must come at
the expense of the total number of photons
leaving the SHG crystal, i.e. the intensity
of the resulting beam. Semi-conductor
lasers used in CD players, are low pow-
ered, therefore it is expected that the in-
tensity of the light emerging from the SHG
crystal will be immeasurably low. For
the autocorrelated light to be detected,
a photo-multiplier must be used between
the SHG crystal and photodiode detector.

Convolution and intensity
auto-correlation

Mathematically, the convolution of two
functions is de�ned as in (2.12).

∫ ∞

−∞
f(x)g(−t + x)dx (2.12)
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Figure 2.8: Compact Disc player laser production by the TO-can production line.
Created by L. Pomfrey.

Qualitatively, the convolution of two func-
tions is a measure of how much a func-
tion g(x) overlaps with a function f(x) as
it is shifted over the function f(x) by an
amount t. The resulting convolution func-
tion is a function of t, thus, a plot of the
convoluted function against t will yield a
graphical representation of how the func-
tion g(x) overlaps with f(x) as it is shifted
by t. The cross-correlation of two func-
tions is similar to the convolution and is
de�ned as in (2.13).

∫ ∞

−∞
g(t + x)f(x)?dx (2.13)

Where f(x)? denotes the complex con-
jugate of the function f(x). The cross-
correlation is a description of the similar-
ity between two functions g(x) and f(x),
where the overlap of the functions can be
altered by a parameter t.

To obtain an expression for the auto-
correlation we replace g(t + x) with f(t +

x), as in (2.14).
∫ ∞

−∞
f(t + x)f(x)?dx (2.14)

Using the de�nition of cross-correlation,
the auto-correlation can now be inter-
preted as the similarity between f(x) and
f(t+x), i.e. the similarity between a func-
tion and itself after it has been shifted by
some amount t.
The intensity autocorrelation of two

beams entering the SHG crystal can now
be expressed mathematically. Since the
laser will be pulsed, the intensity of light
will be a function of time, t. The light
traversing the variable path di�erence will
represent the original intensity function
shifted by a small variable time interval
b, where b is the time taken for the beam
to traverse the variable path di�erence.
An expression for the intensity auto-

correlation of the two beams entering the
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(a) (b)

(c)

Figure 2.9: 2.9a shows a pulsation with a de�nite frequency. 2.9b shows the power
spectrum of 2.9a. A sharp peak corresponding to a large component of energy concen-
trated at a particular frequency can clearly be seen. It should be noted that the power
spectrum does not appear as a sharp vertical line because the pulsation, in this case,
is not a perfect sinusoidal wave and actually contains a combination of frequencies.
2.9c shows the auto-correlation of 2.9a. It can be seen that an auto-correlation value
of 3 corresponds to maximum correlation between a pulse and a pulse shifted by a
small time delay. The distance between peaks is the pulse interval. For a real optical
auto-correlator, this distance corresponding to the time delay would be varied and
measured, therefore, the pulse interval can be found.
Created by G. Weerasinghe.
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SHG crystal can be written as in (2.15).
∫ ∞

−∞
U(t)U(b + t)dt (2.15)

It is conventional to introduce a normal-
isation constant such that when b = 0,
i.e. both pulses are fully correlated, the
maximum correlation of the two pulses
will be represented by 1. This normal-
isation constant is given by the integral
of the intensity squared over all possible
values of t. The expression for the in-
tensity auto-correlation is further changed
when the geometry of the equipment is
considered.[17] In the case of a single
pulsed light source being split and recom-
bined in a SHG crystal, the intensity auto-
correlation function is given as in (2.16).

1 +

∫∞
−∞ 2U(t)U(b + t)dt

∫∞
−∞ [U(t)]2 dt

(2.16)

In this case, the maximum correlation
of two pulses will result in this function
equating to 3. This can be seen by setting
b = 0 (if the time di�erence between the
two pulses is zero, pulses should be fully
correlated) as in (2.17).

1 +

∫∞
−∞ 2U(t)U(b + t)dt

∫∞
−∞ [U(t)]2 dt

= 1 +
2

∫∞
−∞ [U(t)]2 dt

∫∞
−∞ [U(t)]2 dt

= 3 (2.17)

Power spectrum
The Wiener-Kinchin theorem states
that the Fourier transform of a cross-
correlation function (two functions, F (t)
and G(t)) can be expressed as in (2.18).

√
2πG(k)F ?(k) (2.18)

For an auto-correlation, G(k) → F (k),
therefore, the Fourier transform of an
auto-correlation function will be as given
in (2.19).[18]

√
2π |F (k)|2 (2.19)

The Fourier transform of the auto-
correlation function is the modulus
squared of the Fourier transform of F (t).
The modulus squared of F (k) is known as
the power spectrum which describes how
the energy of a pulsation is distributed
amongst di�erent frequency components.

Other references: [19, 1].

2.2.3 Second harmonic
generation

Author: P. Smith

The experiment to generate and mea-
sure chaotic optical pulses from a Com-
pact Disc laser diode utilises an intensity
auto-correlation to investigate the pulse
width. In the experiment the pulsed laser
light is split into two equal parts by a
beam splitter and travels along two dif-
ferent paths (with one path length being
varied by a delay line) before being recom-
bined in a second harmonic crystal. The
intensity of the output from the second
harmonic signal is then measured using a
photo-multiplier tube (PMT).

Electric polarisation of linear and
non-linear materials
Second harmonic generation is a phenom-
ena associated with non linear materials.
It is the response of the atoms inside the
material to the associated electric �eld of
the laser light that makes second harmonic
generation possible. The outer electrons
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Figure 2.10: Schematic diagram of a simple intensity auto-correlator.[1]
Created by L. Pomfrey.

of atoms respond to an applied electric
�eld in such a way that the atoms become
electrically polarised. In linear media the
macroscopic polarisation is directly pro-
portional to the magnitude of the electric
�eld, as can be seen in (2.20).

P = ε0χE (2.20)
Where P is the polarisation, ε0 is the per-
mittivity of free space, χ is the electric
susceptibility constant, and E is the elec-
tric �eld.

The second orders (and higher order
terms) do not make a sizeable contribu-
tion in linear, isotropic, homogeneous ma-
terials because the linear term is so large
compared to them.

In a non linear material where the ap-
plied electric �eld is large enough, this lin-
ear response breaks down and higher or-
der contributions become important. The
higher order terms can be shown by ex-
panding χ in a power series as in (2.21).

χ = χ1 + χ2E + χ3E2 + . . . (2.21)

Substituting into (2.20) gives (2.22).

P = ε0
(
χ1E + χ2E2 + χ3E3 + . . .

)
(2.22)

(2.20) can then be re-written as (2.23).

P = P1 + (P2 + P3 + . . .) (2.23)

The linear P1 completely describes the po-
larization of linear media and suits the
purpose of linear optics (where P1 = εE
and ε = ε0χ1).
Lasers however allow intense coherent

light to be focused onto wavelength di-
mensions such that the associated elec-
tric �eld of the laser exceeds 1010 V.m−1,
on the order of strengths of �elds binding
electrons to nuclei. This means that the
higher order terms can become sizeable in
non-linear media to appreciably a�ect the
�rst order polarization.

Second harmonic generation
A non-linear crystal can be used to pro-
duce second and even third harmonic gen-
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eration providing a means to produce co-
herent, intense electromagnetic radiation
at which there are no e�cient laser tran-
sitions. From (2.22) and (2.23) the second
order term is given by (2.24).

P2 = ε0χ2E2 (2.24)

It can be seen that the second order po-
larization term P2 is proportional to the
square of the applied electric �eld.

The signal produced from second har-
monic generation is twice that of the fun-
damental wave and half the wavelength.
This can be shown from a basic mathe-
matical argument. If the applied electric
�eld or one of its Fourier components is of
the form given in (2.25),

E = E0 cos(ωt) (2.25)

Then, substituting into (2.24) gives (2.26).

P2 = ε0χ2 (E0 cos(ωt))2

= ε0χ2E2
0

[
1
2

(1 + cos(2ωt))
]

P2 =
1
2
ε0χ2E2

0 +
1
2
ε0χ2E2

0 cos(2ωt)

(2.26)
The second term of the second order po-
larization contains the term that is twice
the frequency of the applied optical �eld,
ω. The �rst term is a constant or DC com-
ponent representing the optical recti�ca-
tion.

The P2 polarization term causes dipole
oscillations at 2ω in the medium. These
dipole oscillations are what cause electro-
magnetic radiation of angular frequency
2ω to be generated and emitted from the
medium together with the fundamental
(pump wave) at frequency ω. This is
why the infra-red pass �lter at 780 nm
is required to block out the fundamental
wave, so that only the second order signal
reaches the photo-multiplier tube.

Phase matching
The non-linear response that allows the
conversion of energy from the fundamen-
tal wave to the second order electromag-
netic wave also allows for energy to be
converted back the other way. The direc-
tion of the energy �ow is dependant on
the phase matching between the funda-
mental wave of frequency ω and the sec-
ond order wave of frequency 2ω. Due to
dispersion the light emitted at frequency
2ω travels at a di�erent speed in the op-
tical medium than the light at frequency
ω. Another way to view this is that the
refractive index inside a non-linear mate-
rial is slightly di�erent for the fundamen-
tal and harmonic wavelengths.
This means the two waves will be pe-

riodically in and out of phase with each
other. This will result in very little fre-
quency doubled output being obtained.
The irradiance of the second harmonic
�eld is proportional to the irradiance fac-
tor given in (2.27).

sin c2

(
∆KL

2

)
(2.27)

Where K = nω/c is the wave propagation
constant, and L is the distance into the
crystal.
For optimum non-linear phase conver-

sion a proper phase relationship has to be
maintained along the propagation direc-
tion through the material. The di�erence
in wave number between the two beams
should, ideally, be zero, where the di�er-
ence is given by (2.28).

∆K = K2ω − 2Kω (2.28)

Where K2ω is the wave number of the
secnd harmonic wave, and Kω is the wave
number of the fundamental wave.
When ∆K = 0 the irradiance and sig-

nal of the second harmonic wave is maxi-
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Figure 2.11: Phase mismatch for second harmonic generation. Due to chromatic dis-
persion the wave number of the second harmonic is more than twice as large as that
for the fundamental wave.[20]
Created by P. Smith.

mized, however, due to dispersion ∆K is
typically not zero and the irradiance will
be reduced. A coherence length, LC , can
be de�ned as in (2.29).

LC =
π

∆K
(2.29)

When L = LC , the sin c2 intensity fac-
tor is reduced to about 0.4 of its maxi-
mum value. This provides a method of
de�ning the e�ciency of a crystal for sec-
ond harmonic generation. There are sev-
eral methods for phase matching a non-
linear crystal such that second harmonic
generation is properly maximized. The ef-
�ciency of second harmonic generation is
maximized by making small angular ad-
justments to the crystal to ensure correct
phase matching.[1] This is best matched
by critical phase matching which is a
form of birefringent phase matching and
quasi-phase matching (which is employed
in the non-linear crystals produced by
Thorlabs[21]).

Critical phase matching: This means
that an angular adjustment of the
crystal (or the beam) is used to �nd
a phase matching con�guration. In
a birefringent (double refraction)
crystal, non incident light will be
refracted such that the beam is
e�ectively split in two (creating

an ordinary ray (O-ray)s and an
extra-ordinary ray (E-ray)). The O-
and E- rays travel along di�erent
paths and have di�erent refractive
indices such that there will be two
rays emerging from the crystal.
Changing the angle of propagation
leaves the refractive index for the
O-ray constant while the E-rays'
refractive index will change. At a
certain angle, the direction through
the crystal will be such that n2ω

(where n is the refractive index) for
the E-ray is equal to nω for the O-ray
and the fundamental and second
harmonic waves will remain in step
and phase matching will be achieved.

Quasi-phase matching: This process in-
volves the usage of a crystal such that
every coherence length, LC , the sign
of the electric susceptibility term χ2

changes. Over the coherence length,
the energy is transferred from the
fundamental �eld to the second har-
monic �eld. Just as the transfer is
about to switch and cause attenua-
tion of the fundamental �eld the sign
of the electric susceptibility changes
and maintains the proper phase re-
lation between the second harmonic
�eld and the dipoles of the medium.
A structure called periodically poled
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lithium niobate (PPLN) which uses
external �elds to perform a periodic
poling of a non-linear ferro-electric
material.

A note on other second order processes
Apart from second harmonic generation
there are other second order non-linear
processes (where unlike second harmonic
generation the resultant wavelengths are
not determined by the initial wave-
lengths). These are listed in Table 2.2
with some third order processes. In SHG
the lack of phase matching between the
fundamental �eld and second harmonic
�eld means that other second order pro-
cesses do not occur with second harmonic
generation. Frequency mixing of two or
more incident beams can lead to sum fre-
quency generation where ω3 = ω1 + ω2,
and di�erence frequency generation where
ω3 = ω1 − ω2.

Experimental consequences
In terms of the experiment, the actual
phase matching of the fundamental and
harmonic �elds is a process of con�gur-
ing the crystal such that the max e�-
ciency of conversion between the two is
achieved (probably by critical phase an-
gle matching). The pulses will be split
into two equal parts and, due to the de-
lay line, will be out of phase when the two
beams are recombined in the second har-
monic generation crystal. When the two
beams' path di�erence matches up, the
second harmonic generation will be maxi-
mized and the intensity reading from the
photo-multiplier tube will be maximized
as well.

The second harmonic crystal is impor-
tant for the experiment as it is this that
recombines the two pulses back together

into a single pulse. The intensity of which
is then measured by the photo-multiplier
tube. The amount of second harmonic
radiation produced is determined by the
temporal overlap of the two pulses. A
maximum in intensity is measured at the
photo-multiplier tube if the two signals
overlap perfectly. The delay line varies
the optical path length over which one
of the signals travels such that the inten-
sity of the combined signal is varied. The
temporal resolution means that the one
pulse will have a signal E(t) and the other
one will have E(t + τ) (where τ is varied
though the optical path length by the de-
lay line).
The intensity correlation function is

measured if the two beams are recombined
in the crystal. The magnitude of the sec-
ond harmonic signal is proportional to the
integral of the squared modulus of the in-
tensity of the beam. Information is gained
when a pulse is auto-correlated. When the
time delay between the two arms is ad-
justed it can be arranged so that a pulse
is correlated with the one that directly fol-
lows it. This is known as cross-correlation
and it will be used to study the overall
temporal chaos of the laser output.

2.3 The design and
construction of the
auto-correlator

Author: A. Shalashilin.

In order to test the theory of the chaotic
laser auto-correlation, an experimental
setup was developed. Although time pres-
sure prevented us from constructing it,
nonetheless a detailed plan was developed
specifying individual components and re-
sulting in a scale technical drawing of the
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Figure 2.12: Graphs showing e�ectiveness of PPLN compared to non-phased matched
situation.[21]
Created by P. Smith.

Second order non-linear pro-
cesses

Third order non-linear pro-
cesses

Second harmonic generation Third harmonic generation
Three wave mixing Four wave mixing
Optical recti�cation Kerr e�ect
Parametric ampli�cation Raman scattering
Pockels e�ect Brillouin scattering

Table 2.2: Examples of second- and third-order non-linear processes.
Created by P. Smith.

Figure 2.13: A graph of two signals, their overlap in the second harmonic crystal and
the second harmonic signal. Only the signal under the pulse is detected by the photo-
multiplier tube. Varying τ obtains better temporal resolution.[22]
Created by P. Smith.
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(a) (b)

Figure 2.14: A semi-conductor laser diode of the type used in the experiment. 2.14a
shows the laser in it's enclosure ready to be used, a US one cent coin is shown for
scale. 2.14b shows the laser chip itself, a sewing needle is shown for scale.
Created by W. Tou and A. Shalashilin.

setup.
Our laser was cannibalised from an

ordinary CD-ROM drive, with standard
780 nm average output. The experiment
would be safe to conduct and demonstrate
without worrying about hazards caused by
stray beams or accidental exposure into
the naked eye, because the laser was rated
as Class I.

The autocorrelation setup visibly re-
minds of a modi�ed Michelson interferom-
eter, which is not that far from the truth.
Like in the famous example, there is a
50:50 beam splitter mirror, which would
send part of the laser beam towards a set
of two mirrors, a corner cube and another
mirror which would re�ect it back along
the same path. The other beam would fol-
low an identical type of path, except the
�nal mirror to corner cube distance would
be variable. This is achieved by placing
the mirror on a motorised delay line. This
allows a very high precision measurement
of the path length, and allows for precise
almost in�nitesimal change in the distance
between the corner cube and the mirror

(given the scales at which we are working
at, this is an important advantage).

Figure 2.15: A schematic of a corner cube
of the type used in the experiment.
Created by W. Tou and A. Shalashilin.

After the beams travel the two arm
lengths and return to the beam split-
ter mirror, they are superimposed and
in order to attain the data of the auto-
correlation (which is essentially the dif-
ference between the lengths travelled by
the two beams), we require for the re-
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combined beam to travel �rst through a
half-wave plate, and then a second har-
monic crystal, made of monopotassium
sulfate (KDP). This arrangement also in-
cludes two aspheric lenses which are nec-
essary to focus the beam into the crys-
tal and then re-focus the beam coming
out. Finally the beam can enter a photo-
multiplier tube, although since we only re-
quire the component of light that has been
frequency doubled, the tube needs to be
optically isolated and the beam �ltered by
an infra-red �lter.

A schematic of the setup can be seen in
Fig. 2.10, and the scale diagram can be
seen in Fig. 2.16.

Like most optical experiments, ours is
fairly costly. The most expensive part is
the delay line, whose components alone
total to ¿8,201.00. Luckily, through ne-
gotiations with Newport, we were able to
attain a 15% discount on that �gure.

All of the other components, which are
manufactured by Thorlabs, add up to
¿1,208.20 (a detailed list is given in Ta-
ble 2.3). An exception was the second
harmonic crystal which neither of two op-
tical suppliers had. Instead, we found a
supplier called Red Optronics but have
not yet had a reply from them. In any
case, without that �nal piece of equipment
(which is a costly piece of equipment in it-
self), our apparatus sums up to ¿8,179.05
which is quite expensive considering that
this excludes VAT. Luckily some of the
components such as the photo-multiplier
tube and the CD-ROM drive, from which
the laser was extracted by our team mem-
bers, were provided by UCL Department
of Physics and the London Centre of Nan-
otechnology.

It is highly unlikely that these expenses
can be avoided as the experimental setup
does require kinematic mirror mounts to
directly re�ect the beam and point it in

the right direction, it requires the corner
cubes to produce a perfect re�ected beam
parallel to the incident one, and it requires
the delay line to precisely move the mir-
ror so that we know an exact change in
distance to a precision no simple ruler can
measure. On the other hand, after our
experiment would be concluded this ap-
paratus can be reused for any other opti-
cal setups, this would justify the expenses
slightly.

2.4 Computer modelling
of the laser pulsation

Authors: M. Moussa and G. Weerasinghe
In order to understand what is going

on in our experiment it is advantageous
to build a simulation of the setup. The
reasons for doing so are numerous, such
as being able to observe e�ects and pro-
cesses that would be impossible or di�cult
to measure/observe in a physical model
(such as the region carrier densities in the
laser cavity). A simulation allows us to
vary di�erent parameters and observe the
consequences of doing so without a long
down time compared to the setup. This
also allows us to intercept errors in the
setup that may not be obvious in the ex-
periment, which would have wasted time
and e�ort. Data may be represented vi-
sually in a variety of ways that are sim-
ply not possible with the physical model.
This allows us to represent mission criti-
cal/interesting data to people in a useful
way, which may have otherwise been im-
possible. Performance and experimental
improvements are also easy to implement.
On the other hand it is important we do

not oversimplify the model, which would
almost certainly give us a di�erent ac-
count of what is happening than the ex-
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Figure 2.16: Scale drawing of the auto-correlator setup. Note: A larger version is
available in the apppendix.
Created by W. Tou.
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Component Product code Unit price Quantity Line price
Mounted half-wave plate WPMH05M-780 ¿143.00 2 ¿286.00
Economy 50:50 Beam-
splitter

EBS1 ¿17.80 1 ¿17.80

Mounted Geltech As-
pheric Lens

C230TM-B ¿53.10 2 ¿106.20

Broadband Dielectric
Mirror

BB1-E03 ¿47.30 4 ¿189.20

Mounted Retro-Re�ector
(Corner cube)

PM1-RR300 ¿85.10 2 ¿170.20

Square Colored Glass Fil-
ter

FGL780S ¿46.70 1 ¿46.70

Beamsplitter mount LMR1 ¿9.90 1 ¿9.90
Mirror mount KM100 ¿25.10 4 ¿100.40
IR Mount FH2 ¿12.30 1 ¿12.30
Mounting Base BA1 ¿3.50 10 ¿35.10
Mounting post P100/M ¿23.40 10 ¿234.00

Subtotal: ¿1,207.70
(a) Items from Thorlabs

Component Product code Unit price Quantity Line price
Motorized translation
stage

UTS150PPV6 ¿2,945.00 2 ¿5,890.00

XPS controller XPS-C6 ¿4,445.00 1 ¿4,445.00
Agilis Optical mount AG-M100NV6 ¿276.00 2 ¿552.00
Drive module XPS-DRV01 ¿359.00 2 ¿718.00
Hand held controller AG-UC2 ¿176.00 1 ¿176.00

Subtotal: ¿11,781.00
Total: ¿12,988.70

(b) Items from Newport for the delay line

Table 2.3: The equipment required to build the auto-correlator and the prices of each
item.
Created by A. Shalashilin.
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(a) (b)

(c) (d)

Figure 2.17: Images of a photo-multiplier tube in the lab.
Created by W. Tou.
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periment. It also important we check it is
valid for a wide range of input. This re-
quires us to check it with di�erential mod-
els that we know the analytical solution to
and see if the model outputs a numerical
solution that converges to the required ac-
curacy.

2.4.1 Solving the rate equations
Author: M. Moussa A mathematical
treatment of the laser simulation produces
3 �rst order coupled ordinary di�eren-
tial equations (ODEs) that need to be
solved simultaneously to understand how
the laser behaviour evolves over time.[11]
The rate equations are given in 2.9, and
are of the form given in (2.30).
δx(t)

δt
= f(t, x(t), y(t), z(t)), x(0) = x0

(2.30a)
δy(t)
δt

= f(t, x(t), y(t), z(t)), y(0) = y0

(2.30b)
δz(t)
δt

= f(t, x(t), y(t), z(t)), z(0) = z0

(2.30c)
These ordinary di�erential equations can-
not be solved analytically due to the cou-
pling from the dependent variables, i.e.
the reliance on other variables at each
time step. The only choice left is a numer-
ical analysis which, rather importantly,
will produce an approximation of the an-
swer, not an exact answer, which may lead
to complications explained later.

There are many mathematical tools at
our disposal to begin an analysis, and so
it is important to pick the right one for
our speci�c needs. Numerical analysis re-
quires us to consider three important as-
pects;
• Convergence: Whether the chosen

numerical method converges to the
solution.

• Stability: How sensitive the method
is to errors.

• Order: How well the method approx-
imates the solution.

An Euler method could be used[23], by
which the di�erential is replaced with a �-
nite di�erence approximation as in (2.31).

δn(t)
δt

≈ n(t + h)− n(t)
h

(2.31)

Where h is the step size we choose.
This can easily be rewritten as a re-

cursive function, for which a computer is
well suited to solve. The problem with
this, and similar methods, is that it is
nowhere near accurate enough for small h,
as required, especially when you consider
that we expect the laser power to pulse
sharply, which if not modelled accurately
will throw us o�. The Euler method is said
to be �rst order, which means that the to-
tal error at the end of the approximation
will be proportional to h.
A suitable candidate is a Runge-Kutta

method. These are a well known fam-
ily of numerical methods developed by C.
Runge and M. W. Kutta in the 1900's.
The most common implementation is the
fourth order Runge-Kutta method, which
in fact is so commonly used it is referred
to as the Runge-Kutta method.[24]
For a given initial value problem (IVP)

such as ours with the condition given in
(2.32),

δn(t)
δt

= f(t, y), y(t0) = y0 (2.32)

Then the fourth order Runge-Kutta
method is de�ned as in (2.33).

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

(2.33)

35



PHAS3441 : Group Projects Group 7 March 2008

Where the terms kn are de�ned as in
(2.34).

k1 = f(tn, yn) (2.34a)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
(2.34b)

k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
(2.34c)

k4 = f(tn + h, yn + hk3) (2.34d)

2.4.2 The Mathematica model
Author: G. Weerasinghe

The simulation of chaotic and self pul-
sations from a laser diode was developed
simultaneously in both MatLab and Math-
ematica. It was agreed that it would be
sensible to not concentrate all e�orts on
a single solution but instead to develop
the simulation across di�erent languages.
In this way, if obstacles or limitations oc-
curred in one language, the hope would be
that this may be overcome using another.
There was also a division of skills amongst
the group with members being competent
in di�erent programming languages.

The primary goal of the simulation
was to accurately model the pulsations of
a semiconductor laser when driven with
both direct and alternating currents. This
would involve solving the relevant rate
equations numerically using the fourth or-
der Runge-Kutta method. In addition to
this, the autocorrelation and power spec-
trum functions were also implemented. As
part of the simulation, I also thought it
would be useful to implement an algo-
rithm which would accurately detect the
conditions needed to produce maximum
chaotic output from the laser.

The simulation in Mathematica was de-
signed using a modular approach from the

start. This aided debugging and gave the
code a more elegant and organised form.
The end product was a library of modules
rather than a mass of code. Individual
modules could be readily and easily re-
placed with updated code, when needed.
After evaluating the entire notebook in
Mathematica, a user could open a blank
canvas, and easily access the required
modules. Ease of use was consistently a
key criteria throughout the development
of the simulation since the intention of
the model was to supplement the physical
development of the auto-correlator and it
was important that every member of the
group knew how to operate the simulation
for cross-checking experimental and theo-
retical results. As a programming task,
my aims were as follows:

• Produce a solution which would be
easy to use and intuitive.

• Frequently group repetitive proce-
dures into separate modules, thus re-
ducing the bulk of the code.

• Produce a solution which would pro-
duce accurate results in a reasonable
amount of time.

• Wherever possible, use Mathemat-
ica's own algorithms for calculations.
These are usually optimized and gen-
erally much quicker.

Simulating the auto-correlation
The result of an intensity autocorrelation
can be simulated using an algorithm, pro-
vided P (t) has been calculated from solv-
ing the rate equations. The method of
performing an auto-correlation on P (t) is
described in the section on autocorrela-
tors. The formula used to yield the auto-
correlation as a function of the time delay

36



PHAS3441 : Group Projects Group 7 March 2008

is given in (2.16). To implement the func-
tion in code the fact given in (2.35).

lim
∆t→0

∑
n

f(tn)∆tn =
∫ x2

x1

f(t)dt (2.35)

I therefore take the integral as a �nite sum
over small intervals ∆t, where the sum-
mation is over a �nite range covering a
su�cient number of pulsations. Mathe-
matica's Sum function is used to calculate
the �nite sum. This is nested inside a do
loop which changes the values of time de-
lay (b). The values are then appended
into a list containing b, ac[b] where ac[b]
is the value of the autocorrelation at a
time delay b. At the end of the loop, the
acoutputfunction1 is produced as an in-
terpolating function of the list.

Calculating the power spectrum
The power spectrum is the modulus
squared of the Fourier transform of
P (t).[18] The Fourier transform of P (t) is
calculated from (2.36).

g(k) =
1√
2π

∫ ∞

−∞
P (t)e−iωtdt (2.36)

To produce the function g(k), a procedure
similar to the calculation of the autocor-
relation is used. The integral is replaced
with a �nite sum over small intervals of
dt. The summation is again nested in-
side a do loop which increments values of
k, in an attempt to produce a continuous
function. It was found that the Fourier
transform algorithm implemented was ex-
tremely sensitive to the total amount of
iterations performed. The total amount
of iterations is given by (2.37).

Itot =
(

(t2 − t1)
tstep

)(
(f2 − f1)

fstep

)
(2.37)

1See the Mathematica source code in the ap-
pendix.

Where tstep is the time interval to step
through the time range (t2 − t1) by each
iteration, and similarly for fstep (fre-
quency). To obtain a good result in a rea-
sonable amount of time, the variables t2,
t1, tstep, f2, f1 and fstep had to be �tuned�
accordingly. Through extensive testing,
the following was determined:

• Smaller time intervals produce less
artifacts (spurious results) in the
Fourier transform.

• Larger time intervals give between
resolution between peaks, i.e. a
higher peak would appear more
prominently amongst a series of
shorter peaks.

• Decreasing the frequency step adjusts
the sharpness of the peaks and gives
more de�ned peaks for larger ranges.

• Increasing the frequency range con-
trols the ability to pick up peaks over
a larger range.

Obtaining large volumes of data
It became increasingly apparent during
development that observing in real time
how the functions change with modulation
frequency and driving current would re-
quire a database of acquired data. This is
because each set of data, containing p(t),
n1(t), n2(t), the power spectrum and au-
tocorrelation would take about 80 seconds
to calculate.
The idea was to design a sub program

which would automatically acquire data
across a user de�ned frequency and cur-
rent range. Sampled data output, how-
ever, would take up too much hard disk
space per set (approximately 5 MB per
set), since to represent each function accu-
rately would require at least 4000 points
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to be taken. The most feasible solution to
this problem was to export all the graphed
output as GIF image �les. The GIF for-
mat was found to render the most quickly
in Mathematica and provide a good qual-
ity image, whilst not occupying too much
disk space. Once a library of GIF images
had been created, it was possible to al-
ter current and frequency as a parameter
and allow Mathematica to import a cor-
responding set of image �les for display.
The function �get data� (gdexp) performs
the following operations:

1. Asks for current range, frequency
range and steps to take over each
range per iteration.

2. Executes two do loops, one nested in-
side the other. The outer loop tra-
verses the current range and the inner
loop traverses the frequency range.
For every current measurement, the
entire frequency range is traversed,
then the current is incremented in the
outer loop, and the process repeats
until the maximum current range is
reached.

3. For each current-frequency set of
data, all functions are calculated.
The graphed output for each is then
exported to a GIF �le.

4. For each current-frequency �run� an
index �le is created containing all the
variables de�ned in step 1. This is so
that Mathematica knows how to read
the data back.

Acquiring large amounts of data (>400
sets) consumes a considerable amount of
system RAM. Mathematica crashes at the
point when RAM runs out. For this rea-
son, it is not possible to acquire a large
amount of data in one run. Instead, the

calculations are divided into smaller sepa-
rate composite runs. After each compos-
ite run, Mathematica's kernel is restarted,
and the next composite run commences.
The function �continue get data� (cgd)
divides a single run into sets of compos-
ite runs seamlessly and without corrupt-
ing the database. It was found that the
stability of the computer worsened when
data was acquired over particularly long
periods of time (&8 hours). This was
most likely due to the CPU overheating.
For this reason, Mathematica would usu-
ally crash midway during a long set of
calculations. It was important that, in
this event, procedures were implemented
which protect the database from corrup-
tion and make it possible to resume data
acquisition from the point at which Math-
ematica would crash. This would avoid
having to re-acquire the data from scratch,
which would be very time consuming.
The procedures installed to protect the

database against Mathematica crashing
are:

• Index �le is written per current
set. This means that if Mathematica
crashes midway, the previous results
are not a�ected. A user could allow
the CPU to cool, then later use the
cgd function to simply specify a max-
imum current, and the program will
resuming acquiring data up to that
maximum from the current point at
which Mathematica crashed.

• Pulse information and chaos data are
also written to a data �le per cur-
rent run. This eliminates the risk
of data redundancy (where measure-
ments would be written to the �le
twice in the even of Mathematica
crashing). Using cgd, the program
will load back in the chaos and pulse
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data, and resume the data acquisition
process.

• The function cgd does not allow the
user to specify a maximum current
range that is less than the point at
which the integrity of database has
been veri�ed.

Detecting chaos
Chaotic pulsations cannot be distin-
guished by eye, instead, an algorithm
must be employed which quanti�es each
chaotic output to determine what makes a
signal chaotic. To accomplish this, I make
use of the auto-correlation function of
P (t). If the function P (t) is chaotic, then
the probability the autocorrelation func-
tion will maximize (equal 3) at any time
delay will be negligibly small. This can
seen by imagining two completely random
pulsations. If the same pulsation overlaps
with itself shifted by a small amount then
it would be unlikely that the shifted pul-
sation will be similar to the original pulse
because the pulsations exhibit little or no
periodicity. Therefore, one can expect a
few peaks with heights around 1, or 2 but
never 3.

Auto-correlation functions for chaotic
pulsations tend to display the following
characteristics;

• Few correlated peaks, having a height
of less than 3.

• Majority of points lie within a small
height range.

Given these characteristics, the algo-
rithm to detect chaos does the following;

• Samples the entire autocorrelated
function producing a list of points
corresponding to values of the func-
tion.

• Sorts the list from higher to lower.

• Averages the highest 6 points with
183rd-189thhighest point.

• Computes and stores this average for
all frequencies and currents in a spec-
i�ed range.

• The lower the average, the more
chaotic the pulsations.

The purpose of averaging the 183rd-189th
highest points is part of identifying key
characteristic features of a chaotic auto-
correlation function. For non-chaotic pul-
sations, the 183rdand 189thhighest terms
are still su�ciently high. However, for
chaotic pulsations, these terms tend to
be noticeably smaller than the 6 highest
terms. The numbers 183 and 189 are cho-
sen arbitrarily to lie approximately mid-
way in the list.

Obtaining pulse interval and
magnitudes for non-chaotic pulses
It is possible to obtain the pulse interval
using the autocorrelation function. The
pulse interval can only be calculated for
non-chaotic pulsations, i.e. pulsations
created by applying a direct current. To
calculate the pulse interval, the temporal
distance between two points separated by
the period must be measured. The cal-
culation of this heavily exploits a feature
of non-chaotic autocorrelation functions
which involves the instantaneous rate of
change. Despite the appearance of a non-
chaotic autocorrelation function, there are
in fact no stationary points. This is
largely due to the step sizes used for eval-
uation. However, at a given peak, the
instantaneous rate of change of the au-
tocorrelation function is discontinuous; it
switches quickly between a positive rate of
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change and a negative rate of change. By
detecting these unique points, it is pos-
sible to locate the positions of the peaks
in the autocorrelation. Once the positions
have been found, the temporal distance is
measured between consecutive peaks, and
the pulse interval is calculated.

The algorithm intervalfinder there-
fore does the following:
• Scans the instantaneous rate of

change of the autocorrelation func-
tion, A(t).

• For a time t, A(t) and A(t + dt) are
read in, where dt is a short interval.

• If the sign of A(t+dt) is negative and
A(t) is positive, then this represents
the location of the peak.

• The point (t1) is marked and the loop
repeats �nding the next instance of
the above condition.

• When the condition is satis�ed again,
the point is marked again, t2.

• The di�erence (t2 − t1) is the pulse
interval.

The pulse magnitude is calculated by �nd-
ing the maximum point of the function
P (t). This is found by sampling the func-
tion, producing a list of points, and then
�nding the maximum in that list.

2.5 Results from
computer modelling

Authors: M. Moussa and G. Weerasinghe

2.5.1 Comparison of the models
The advantage of simultaneously produc-
ing two separate simulations is that it is

possible to cross check the outputs for con-
sistency. Comparing the result for photon
density from both the Matlab and Math-
ematica models (see Figure 2.18), it is
clearly seen that there is a consistency
with the output from solving the rate
equations.
Figure 2.19 shows chaotic output from

the Mathematica and Matlab simulations,
respectively. The output was obtained at
an input current of 32 mA and a modula-
tion frequency of 2 GHz. The �gures show
consistency in the solutions to the chaotic
rate equations.
Figure 2.20 shows a result obtained

from the Matlab model that is not avail-
able using the Mathematica model. It
shows a plot of the ratio of the carrier re-
gion densities (n1/n2). The long tail cor-
responds to the laser powering up, and be-
ginning to lase when it reaches the circular
region. It will remain in this circular loop
as the laser pulses periodically.
Figure 2.20b shows the case when chaos

is introduced into the simulation. Again
the laser takes time to lase, but once
it does the pattern is signi�cantly di�er-
ent than the periodic lasing. The path
no longer traces over itself, instead de-
viating from the circular trace more and
more with each pulse. This pattern is a
good alternative way to distinguish be-
tween chaotic and non-chaotic laser puls-
ing.
The Matlab model did not progress

as far as the Mathematica model due
to many technical di�culties encountered
during its development. These di�culties
included;
• Having to write a Runge-Kutta ODE

solver from scratch asMatlab's ODE45
function encountered di�culties with
the rate equations.

• Problems with the Fast Fourier
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(a) Mathematica

(b) Matlab

Figure 2.18: Graphs of photon density from the Mathematica and Matlab models
respectively.
Created by M. Moussa and G. Weerasinghe.
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(a) Mathematica

(b) Matlab

Figure 2.19: Chaotic output from the Mathematica and Matlab models, the input
current amplitude was set at 32 mA and the modulation frequency was set at 2 GHz.
Created by M. Moussa and G. Weerasinghe.
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(a) Non-chaotic pulsation

(b) Chaotic pulsation

Figure 2.20: The plot of the ratio of the carrier region densities from the Matlab model.
The di�erence between the plots when the laser is exhibiting chaotic and non-chaotic
pulsation is easily visible.
Created by M. Moussa and G. Weerasinghe.
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Transform (FFT) algorithm imple-
mented in Matlab required to pro-
duce power spectrums and the auto-
correlation function.

• The Mathematica simulation made
heavy use of approximating de�nite
integrals with �nite summations for
producing the Fourier Transform and
the auto-correlation. An equivalent
method was very di�cult to imple-
ment in the Matlab model.

Running times were a factor with the
models with both taking a long time to
calculate solutions. The Matlab model
takes a signi�cantly longer time than the
Mathematica model, due in part to run-
ningMatlab over Citrix Metaframe, rather
than natively.

The source code for the models is in-
cluded in the appendix.

A note on the C++ and Fortran
models
Author: L. Pomfrey

Models created using C++ and For-
tran were originally planned. Whilst these
models would have had the advantage of
much faster running times than the Math-
ematica and Matlab models, there were a
number of disadvantages that resulted in
them being scrapped due to the amount of
time implementing the necessary function-
ality would have taken, these included;

• The lack of many mathematical func-
tions already present in the Math-
ematica and Matlab environments.
For this reason a pre-packaged math-
ematical library of basic functions
was used in the C++ model.[25]

• The lack of a native graphical plot-
ting library. Utilising the FLOSS

graphing program Gnuplot was con-
sidered for this.

• Having to write, from scratch, both
Runge-Kutta and Fast Fourier Trans-
form methods.

The C++ Runge-Kutta method is in-
cluded in the appendix.

2.5.2 Mathematica output
Solutions to the rate equations

The solutions to the rate equations clearly
show that driving a semiconducting laser
diode with a DC current will create self
pulsation. The rate of pulsation is found
be proportional to the applied current.
When a modulation frequency is applied,
the simulation shows that at certain fre-
quencies the pulsations become chaotic.
The frequency at which this occurs is de-
pendent on the driving amplitude of the
current and hence the rate at which the
laser would naturally pulsate without the
modulation. The simulation predicts that
for self pulsation to occur, the applied cur-
rent must be between 29.6 and 41.65 mA.

Results from auto-correlation

The results from the simulated autocor-
relation agree well with predictions made
from theory. It was found that non-
chaotic self pulsations correlated consis-
tently, which was expected due to their
periodicity. Chaotic pulsations were found
to be consistently lower, which agreed well
with the theory that chaotic pulsations
have little or no periodicity. The pulse in-
tervals were found to be between 1.41 ns
and 0.557 ns for 29.7 and 41 mA respec-
tively.
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(a) (b)

Figure 2.21: The simulation predicts the self pulsation of a laser diode. The �gure
shows that when a DC bias is applied, the laser diode will not emit a continuous stream
of light, but pulse packets of photons instead. When a DC bias current above 41.65
mA is applied, the pulsations cease. No output from the laser is obtained below a bias
current of 29.6 mA.
Created by G. Weerasinghe.

Figure 2.22: The plots of the two carrier densities in regions 1 and 2. The smaller
amplitude plot represents the unbiased region 2.
Created by G. Weerasinghe.
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Figure 2.23: An example of chaotic output.
Created by G. Weerasinghe.

Results from the power spectrum
Results from the power spectrum clearly
show peaks at angular frequencies corre-
sponding roughly to (2π)/(T ), where T is
the pulse interval calculated from the au-
tocorrelation. Smaller peaks can be seen
at other angular frequencies, however, this
is typical of such waveforms that are not
completely sinusoidal. As the current is
increased, the peak is shifted to the right.
The height of the peak also marginally in-
creases indicating that more energy is be-
ing concentrated in a single frequency.

Results from chaos detection
The aim of the chaos detection algorithm
is to �nd the current and the frequency
which will generate the most chaotic pul-
sations from the laser. The �rst results
from the chaos detection were obtained
from data over the current range of 29.5-
42 mA in steps of 0.5 mA and a modu-

lation frequency range of 0 to 10 GHz in
steps of 500 MHz. The result from apply-
ing the chaos detection algorithm showed
that maximum chaos is obtained at 32.5
mA and 5 GHz modulation frequency.
The second set of results were taken

around the region of maximum chaos
found in the �rst set. The aim was to
search for more chaotic regions over this
particularly chaotic range. The results
were taken at 32.5 mA over a modula-
tion frequency range of 4GHz to 6 GHz in
steps of 100 MHz. The chaos detection al-
gorithm showed that maximum chaos was
obtained at 32.5 mA and 5 GHz modula-
tion frequency.
The �nal set of results were taken over

an even narrower range, focussing partic-
ularly on this area of chaos. They were
taken at 32.5 mA over a modulation fre-
quency range of 4.9 GHz to 5 GHz, in
steps of 4 MHz. The chaos detection al-
gorithm showed that maximum chaos was
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Figure 2.24: A typical power spectrum.
Created by G. Weerasinghe.

(a) Chaotic (b) Non-chaotic

Figure 2.25: The auto-correlation function for chaotic and non-chaotic pulses respec-
tively.
Created by G. Weerasinghe.
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once again found at 32.5 mA and 5 GHz
modulation frequency.

To conclude, unanimously, the results
from the chaos detection predict that a
maximum chaotic output would be ob-
tained from a semiconducting laser diode
if driven with 32.5 mA modulated at a fre-
quency of 5 GHz.
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(a) Output (b) Power spectrum

Figure 2.26: Results taken at the point of maximum chaotic output, as determined by
a chaos detection algorithm. This point is taken to be at 32.5 mA at a modulation
frequency of 5 GHz.
Created by G. Weerasinghe.

49



Appendix A: Computer modelling
source code

Matlab
RungeKuttaFixedGUIVersion.m

function [T,X] = RungeKuttaFixedGUIVersion(ODEFunctions, TimeSpan, InitialValues, StepSize, J)

NumOfSteps = (TimeSpan(2) - TimeSpan(1)) / StepSize;
HalfStepSize = 0.5 * StepSize;
NumOfEquations = size(InitialValues);
X = zeros(NumOfEquations(1), NumOfSteps); % Creates a vector to store values at each step
T = zeros(1, NumOfSteps); % creates a vector to store time values
X(:,1) = InitialValues; % Inserts initial values into data vector
T(1) = TimeSpan(1); % Inserts initial time into time vector

Td = TimeSpan(1); % Set current time step
Xd = InitialValues; % Set current values

for i = 2:NumOfSteps,% Loop for evaluating each step

K1 = feval(ODEFunctions,Td,Xd,J);

Thalf = Td + HalfStepSize;
Xtemp = Xd + HalfStepSize * K1;

K2 = feval(ODEFunctions, Thalf, Xtemp, J);

Xtemp = Xd + HalfStepSize * K2;

K3 = feval(ODEFunctions, Thalf, Xtemp, J);

Tfull = Td + StepSize;

Xtemp = Xd + StepSize * K3;

K4 = feval(ODEFunctions, Tfull, Xtemp, J);
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X(:,i) = Xd + StepSize * (K1 + 2.0 * (K2 + K3) + K4) / 6;

T(i) = Tfull;

Xd = X(:,i);
Td = T(i);

end

X = X';
T = T';

LASERsimulation.m
function varargout = LASERSimulation(varargin)
% LASERSimulation Application M-file for LASERSimulation.fig
% LASERSimulation, by itself, creates a new LASERSimulation or raises the existing
% singleton*.
%
% H = LASERSimulation returns the handle to a new LASERSimulation or the handle to
% the existing singleton*.
%
% LASERSimulation('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LASERSimulation.M with the given input arguments.
%
% LASERSimulation('Property','Value',...) creates a new LASERSimulation or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before LASERSimulation_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to LASERSimulation_OpeningFcn via varargin.
%
% *See GUI Options - GUI allows only one instance to run (singleton).
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help LASERSimulation

% Copyright 2001-2006 The MathWorks, Inc.

% Last Modified by GUIDE v2.5 27-Jan-2008 00:53:32

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
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'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @LASERSimulation_OpeningFcn, ...
'gui_OutputFcn', @LASERSimulation_OutputFcn, ...
'gui_LayoutFcn', [], ...
'gui_Callback', []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT

% --- Executes just before LASERSimulation is made visible.
function LASERSimulation_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to LASERSimulation (see VARARGIN)

% Choose default command line output for LASERSimulation
handles.output = hObject;

axes(handles.power_plot)
cla
axes(handles.n1_n2_plot)
cla

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes LASERSimulation wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = LASERSimulation_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

52



PHAS3441 : Group Projects Group 7 March 2008

% Get default command line output from handles structure
varargout{1} = handles.output;

% --------------------------------------------------------------------
function plot_button_Callback(hObject, eventdata, handles, varargin)
% hObject handle to plot_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI
j_value = str2double(get(handles.j_value_input,'String'));
t_value = str2double(get(handles.t_value_input,'String'));

% Calculate data
[t y] = RungeKuttaFixedGUIVersion('LaserModelGUIVersion', [0.0;t_value],[100000000000000000;100000000000000000;0.0],0.0000000000005, j_value);

% Create power plot plot
axes(handles.power_plot)
plot(t,y(:,3))
xlabel('Time (s)')
ylabel('Photon Density (cm-3)')
title('Plot of Photon Density against Time')
set(handles.power_plot,'XMinorTick','on')
grid on

% Create n1_n2 plot
axes(handles.n1_n2_plot)
plot(y(:,1),y(:,2))
xlabel('Region 1 Carrier Density (A/cm3)')
ylabel('Region 2 Carrier Density (A/cm3)')
title('Plot of ratio of Region Carrier Densities')
set(handles.n1_n2_plot,'XMinorTick','on')
grid on

LaserModelGUIVersion.m
function dydt = LaserModelGUIVersion(t,y,j)

dydt = zeros(size(y));

e = 0.00000000000000000016;
V = 0.000000000072;
B1 = 0.0000000003;
tau12 = 0.0000000015;
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tau21 = 0.0000000025;
gamma1 = 0.1;
gamma2 = 0.2;
N01 = 1200000000000000000;
N02 = 1000000000000000000;
nugp = 7500000000;
g1 = 0.00000308 / nugp;
g2 = 4 * g1;
alpha = 10;
beta = 0.00001;
J = j/1000;

A = y(1);
B = y(2);
C = y(3);

dydt(1) = (J / (e * V)) - (A / CarrierLifetime(A)) - ((A - B) / tau12) - (gamma1 * nugp * g1 * abs(A - N01) * C);
dydt(2) = (-B / CarrierLifetime(B)) - ((B - A) / tau21) + (gamma2 * nugp * g2 * abs(B - N02) * C);
dydt(3) = (nugp * ((gamma1 * g1 * abs(A - N01)) - (gamma2 * g2 * abs(B - N02)) - alpha) * C) + (beta * B1 * (A.^2));

CarrierLifetime.m
function lifetime = CarrierLifetime(Ni)

A = 100000000;
B = 0.0000000003;
C = 0.00000000000000000000000000007;

lifetime = (A + (B * Ni) + (C * (Ni.^2))).^(-1);

Mathematica
Needs["GUIKit`"];
Off[NDSolve::"mxst"];
Off[General::"spell1"];
Off[NIntegrate::"slwcon"];
Off[NIntegrate::"ncvb"];
Off[ReleaseGUIObject::"shdw"]

ac := {
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temp = ProgressDialog[], acexp[0], ReleaseGUIObject[temp]

}

acatm := acexp[1]

sv := {

modfreq = Input["Add modulation frequency? (Y for yes, N for no)"],

If[Or[modfreq == Y,
modfreq == y], {f = Input["Set modulation frequency (in Hz)"]}, ,
f = 0],

J = Input["Set Bias Current (in mA)"],
loadequations,
Print["Variables and equations loaded. Type rs to run the \

simulation"]

}
acexp[iden_] := {

Clear[result],

result = {{-1, 0}},

tlint = 3*10^-8,

thint = 6*10^-8,

delt = (thint - tlint)/1000,

recur = 2*10^-8,

ste = recur/1800,

powtemp = Table[{t, pow[t]}, {t, 2*10^-8, 8*10^-8, 0.1*10^-11}],
pow2 = Interpolation[powtemp],

nm = (Sum[(pow2[t])^2*(delt), {t, tlint, thint, delt}]),
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Do[

{
If[iden == 0,
progressbar["Calculating..", "Autocorrelating...", recur,
b], ,],

lk = (Sum[(pow2[t]*pow2[t + b])*(delt),

{t, tlint, thint, delt}]),

h = ((2*lk/nm) + 1),

result = Append[result, {b, N[h]}]},

{b, 0, recur, ste}],

acoutputfunction = Interpolation[result];,

acoutputgraph =
Plot[acoutputfunction[x], {x, 0, recur},
PlotRange -> {{0, recur}, {0, 3}}, PlotPoints -> 2000,
AxesLabel -> {"Time Delay", "Autocorrellation"}];

}

start := {

Print["***************** Chaotic Optical Pulse Simulator \
****************"],

Print["****************************** by \
********************************"],

Print["*********************** Gihan \
Weerasinghe*************************"],

Print["***************************** 2008 \
*******************************"],

Print[""],
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Print[""],

A = 1*10^8,
B = 3*10^-10,
H = 7*10^-29,

e = 1.6*10^-19,
V = 7.2*10^-11,

k12 = 1.5*10^-9,
k21 = 2.5*10^-9,

r1 = 0.1,
r2 = 0.2,

n01 = 1.2*10^18,
n02 = 1*10^18,

v = 7.5*10^9,

alpha = 10,
bertay = 1*10^-5,
g1 = ((3.08*10^-6)/v),
g2 = (4*g1),
delt = 5*10^-11,
lowint = 0*10^-8,
highint = 8*10^-8,
sedat = Input["Enter data set number"],
sedat = ToString[sedat],
mywrkingdir = "/Users/Gihan/CPS Data/" <> "Set " <> sedat,
SetDirectory[mywrkingdir],

sv

}

loadequations := {
J = J*10^-3,
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k[y_] = (A + (B*y[t]) + (H*(y[t])^2))^-1,

eq1 = y'[
t] == (J/(e*V)) + ((J*(Sin[(2*Pi*f)*t]))/(e*V)) - ((y[t])/(k[

y])) - (((y[t] - x[t]))/(k12)) - (r1*v*
g1*(Abs[(y[t] - n01)])*P[t]),

eq2 = x'[
t] == -(x[t]/k[x]) - ((x[t] - y[t])/k21) + (r2*v*

g2*(Abs[(x[t] - n02)])*P[t]),

eq3 = P'[
t] == (v*P[t]*r1*g1*Abs[(y[t] - n01)]) - (v*r2*g2*P[t]*

Abs[(x[t] - n02)]) - (v*alpha*P[t]) + ((bertay)*B*(y[t])^2)

}

rsexp[iden_] :=
{
Solution =
NDSolve[{eq1, y[0] == 1*10^17, eq2, x[0] == 1*10^17, eq3,
P[0] == 0}, {y, x, P}, {t, 0, 1*10^-7},

StartingStepSize -> 5*10^-13, MaxStepSize -> 5*10^-13,
Method -> {"FixedStep", Method -> "ExplicitRungeKutta"},
MaxSteps -> 300000],

pow[t_] = Evaluate[P[t] /. Solution],

n1[t_] = Evaluate[y[t] /. Solution],

n2[t_] = Evaluate[x[t] /. Solution],

Intensity[t_] = pow[t]
}

rs := {temp = ProgressDialog[],
progressbar["Solving Rate Equations...", "Calculating...", 1,
0.9999], rsexp[0], ReleaseGUIObject[temp]}

sg :=

{Print["For ", (N[J]*1000), " mA"],
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If[f == 0, , Print["And ", f, " Hz Modulation Frequency" ],
Print["And ", f, " Hz Modulation Frequency" ]],

Print[""],

powerplot =
Plot[pow[t], {t, 0, 8*10^-8},
PlotRange -> {{2*10^-8, 8*10^-8}, {0, 50*10^16}},
AxesLabel -> {t, "Number of Photons"}, PlotPoints -> 2000],

n1plot =
Plot[n1[t], {t, 0, 6*10^-8}, AxesLabel -> {t, "N1"},
PlotPoints -> 2000],

n2plot =
Plot[n2[t], {t, 0, 6*10^-8}, AxesLabel -> {t, "N2"},
PlotPoints -> 2000]

}
help := {

Print["**************** Chaotic Optical Pulse Simulator Help \
****************"],

Print[""],
Print[""],

Print["sv -> Set Variables. If the bias current or modulation \
frequency need changing or toggling, sv can be used to change them"],

Print[""],
Print[""],
Print["start -> The Start function must be run initially before \

beginning the simulation for the first time. Start loads inital \
variables and equations, avoiding the need repeatedly reload them. \
"],

Print[""],
Print[""],

Print["sg -> Show Graphs. After running the simulation, you may \
wish to see plots of the various Runge Kutta solutions. The sg \
function will display these."],
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Print[""],
Print[""],

Print["rs -> Run Simulation. Runs the simulation obtaining the \
required Runge Kutta solutions for the specified bias current and \
modulation frequency. The bias current and modulation frequency \
require setting first either by using start or sv"],

Print[""],
Print[""],

Print["ac[Delay Steps, Delay Range] -> Performs Autocorrelaton for \
the last Runge Kutta solutions obtainied using rs (runsimulation \
function). User adds arguements to ac for a stepping delay interval, \
i.e. by how much delta t should be changed after each iteration and \
over which range to perform the autocorrelation. "],

Print[""],
Print[""],

Print["ps -> Calculates Power Spectrum for the last Runge Kutta \
solutions obtainied using rs (runsimulation function)."],

Print[""],
Print[""],

Print["ic -> Interval Change. Overrides the default setting for \
the interval over which the autocorrelation and power spectrum are \
calculated"],

Print[""],
Print[""],

Print["gd -> Get Data. Automatically gathers full set of data over \
a specified frequency and bias current range. Saves GIF snapshots of \
the output in working directory, creating a library of data"],

Print[""],
Print[""],

Print["cgd -> Continue Get Data. Continues acquiring data over a \
previous working range. Useful for dividing long calculations up into \
separate runs, or recovering from a system crash."],
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Print[""],
Print[""],

Print["changeset -> Changes data set folder. A number (n) should \
be entered corresponding to a data folder present in the working \
directory set n. GIF output will be saved in this folder "]

}

progressbar[title_, caption_, tot_, ita_] :=

{
inc = IntegerPart[N[(ita/tot)*100]],
temp @ SetPropertyValue[{"bar", "value"}, inc],
temp @ SetPropertyValue[{"frame", "title"}, title],
temp @ SetPropertyValue[{"label", "text"}, caption],

}

ProgressDialog[] := GUIRun[
Widget["Frame", {
WidgetGroup[{

Widget["Label", {"text" -> "Percent complete:"},
Name -> "label"], Widget["ProgressBar",
{"minimum" -> 0, "maximum" -> 100,
"preferredSize" ->

Widget["Dimension", {"width" -> 300, "height" -> 25}]},
Name -> "bar"]
}, WidgetLayout -> {
"Grouping" -> Column,
"Border" -> {{15, 15}, {25, 20}}}],

"location" -> Widget["Point", {"x" -> 400, "y" -> 400}],
"title" -> "Computation Progress",
"resizable" -> False},
Name -> "frame"]]

psexp[iden_] :=
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{

nmcon = (1/(2*Pi)^0.5),

Clear[discresult],
powtemp = Table[{t, pow[t]}, {t, 2*10^-8, 7*10^-8, 0.1*10^-11}],
pow2 = Interpolation[powtemp],

discresult = {{-1, 0}},

tlint = 2.5*10^-8,

thint = 6.5*10^-8,

flint = 7*10^8,

fhint = 11*10^9,

fcount = 4250,

fint = (fhint - flint)/fcount,

tcount = 1400,

delt = (thint - tlint)/tcount,

Do[ {

If[iden == 0,
progressbar["Calculating...", "Calculating Power Spectrum...",
fhint, k], ,],

discfourier =
nmcon*(Sum[

pow2[t]*(Exp[(-I*k*t)])*delt, {t, tlint, thint, delt}]),

discresult = Append[discresult, {k, N[discfourier]}]},

{k, flint, fhint, fint}],

psoutputresult = Interpolation[Re[discresult]],
psoutputgraph =
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Plot[(Abs[psoutputresult[k]])^2, {k, flint, fhint},
PlotRange -> {{flint, fhint}, {0, 0.8*10^17}}, PlotPoints -> 2000,
Axes -> True, AxesLabel -> {"Ang.Frequency", "Power Spectrum"}]

}
ps := {temp = ProgressDialog[], psexp[0], ReleaseGUIObject[temp]

}

psatm := {

psexp[1]

}

ic := {

lowint =
Input["Type lower interval to evaluate Runge Kutta solutions"],

highint =
Input["Type higher interval to evaluate Runge Kutta solutions"]

}
WriteImage :=

{imgdimens = {300, 300},
mkfilename[jloop, floop],

powerplot =
Plot[pow[t], {t, 0, 8*10^-8},
PlotRange -> {{2*10^-8, 8*10^-8}, {0, 50*10^16}},
AxesLabel -> {t, "Number of Photons"}, PlotPoints -> 2000],

n1plot =
Plot[n1[t], {t, 2*10^-8, 8*10^-8}, AxesLabel -> {t, "N1"},
PlotPoints -> 2000],

n2plot =
Plot[n2[t], {t, 2*10^-8, 8*10^-8}, AxesLabel -> {t, "N2"},
PlotPoints -> 2000],

Export["ac" <> filname, acoutputgraph, "GIF",
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ImageSize -> imgdimens],

Export["ps" <> filname, psoutputgraph, "GIF",
ImageSize -> imgdimens],

Export["n1" <> filname, n1plot, "GIF", ImageSize -> imgdimens],

Export["n2" <> filname, n2plot, "GIF", ImageSize -> imgdimens],

Export["p" <> filname, powerplot, "GIF", ImageSize -> imgdimens]
}

gatherdata :=

{timemax = N[(itercount*realtime)/(3600), 1],
hrpart = IntegerPart[timemax],
secpart = (FractionalPart[timemax])*3600,
hrpart = ToString[hrpart],
secpart = ToString[secpart],

strinfo =
ToString[jloop] <> " mA" <> " and " <> ToString[f] <> " Hz ",

progressbar["Gathering Data... " <> strinfo,
"Approx Time Left: " <> hrpart <> " hrs " <> secpart <> " secs",
itermax, incoun],

rsexp[1];,
acatm;,
chaoscalc;,
psatm;,
If[floop == 0, scanpulse],
WriteImage;

}
gd :=
{jmin = Input["Enter minimum bias current boundary:"],
jminold = jmin,
jmax = Input["Enter maximum bias current boundary:"],
jstep = Input["Increment J in steps of ?"],
fmin = Input["Enter minimum frequency boundary"],
fmax = Input["Enter maximum frequency boundary"],
fstep = Input["Increment f in steps of?"],
incoun = 0,
gdexp;
}
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cgd :=

{lisdat2 = Get[mywrkingdir <> "/index.cps"],
jminold = Extract[lisdat2, 1],
jmin = Extract[lisdat2, 2],
jstep = Extract[lisdat2, 3],
fmin = Extract[lisdat2, 4],
fstep = Extract[lisdat2, 6],
fmax = Extract[lisdat2, 5],

jmax = Input["Enter maximum bias current boundary:"],
If[jmax > jmin, {jmin = jmin + jstep,
chaoslist = Get["chaosdata.cps"],
pulselist = Get["pulsedata.cps"],
incoun = 0.0001,
gdexp;},
Print["Error: Jmax cannot be less than previous maximum value!"]]

}

gdexp := {

realtime = 85,

temp = ProgressDialog[],

If[Not[fmax == 0],

{itermax = (((jmax - jmin)/jstep) + 1)*(((fmax - fmin)/fstep) + 1),
itercount = (itermax) - incoun,

Do[{
J = jloop,

Do[
{f = floop,

loadequations,

realtime = Extract[Timing[gatherdata], 1],
incoun = incoun + 1,

itercount = (itermax) - incoun,
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J = jloop},
{floop, fmin, fmax, fstep}], WriteIndex[jloop], finishup},

{jloop, jmin, jmax, jstep}

]}, ,],

If[fmax == 0, {f = 0, floop = 0,
itermax = (((jmax - jmin)/jstep) + 1),
itercount = (itermax) - incoun,
Do[{J = jloop, loadequations,

realtime = Extract[Timing[gatherdata], 1], incoun = incoun + 1,
WriteIndex[jloop], finishup,
itercount = (itermax) - incoun}, {jloop, jmin, jmax,
jstep}]}, ,],

ReleaseGUIObject[temp]

}
mkfilename[J_, f_] :=

{inpar = ToString[IntegerPart[J]],
frpar = ToString[FractionalPart[J]],
dig = StringLength[frpar] - 2,
frpar = StringTake[frpar, -dig],
frepar = ToString[f],
filname = inpar <> frpar <> frepar <> ".gif",

}
exploredata :=
{

lisdat = Get[mywrkingdir <> "/index.cps"],
jmin = Extract[lisdat, 1],
jmax = Extract[lisdat, 2],
jstep = Extract[lisdat, 3],
fmin = Extract[lisdat, 4],
fmax = Extract[lisdat, 5],
fstep = Extract[lisdat, 6],
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jmin = N[jmin],
dispdim = {200, 200},

If[Not[fmax == 0],
Manipulate[{mkfilename[cur, fr];,
Import["p" <> filname, ImageSize -> dispdim],
Import["ps" <> filname, ImageSize -> dispdim],
Import["ac" <> filname, ImageSize -> dispdim],
Import["n1" <> filname, ImageSize -> dispdim],
Import["n2" <> filname, ImageSize -> dispdim]}, {{cur, jmin,
"Bias Current (mA)"}, jmin, jmax,

jstep}, {{fr, fmin, "Frequency (Hz)"}, fmin, fmax, fstep}], ,],

If[fmax == 0,
Manipulate[{mkfilename[cur, 0];, Import["p" <> filname],
Import["ps" <> filname], Import["ac" <> filname],
Import["n1" <> filname],
Import["n2" <> filname]}, {{cur, jmin, "Bias Current (mA)"},
jmin, jmax, jstep}], ,]

}

changeset :=

{
sedat = Input["Enter data set number"],
sedat = ToString[sedat],
mywrkingdir = "/Users/Gihan/CPS Data/" <> "Set " <> sedat,
SetDirectory[mywrkingdir]

}

chaosdetect :=

{

chdata = Get["chaosdata.cps"],
len = Length[chdata],
a = Extract[chdata, {1, 1}],
jch = Extract[chdata, {1, 2}],
fch = Extract[chdata, {1, 3}],
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Do[{

b = Extract[chdata, {n, 1}],

If[b < a, {a = b, jch = Extract[chdata, {n, 2}],
fch = Extract[chdata, {n, 3}]}, ,]

},

{n, 2, len}],

curresult = ToString[jch],
freqresult = ToString[fch],

Print["Maximum Chaos Occurs At: "],
Print[curresult <> " mA"],
Print[freqresult <> " Hz"]

}
intervalfinder :=

{time1 = 0, delz = 1*10^-12,
ratechang[

z_] = (acoutputfunction[z + delz] -
acoutputfunction[z])/(delz);,

Do[

If[And[

Sign[ratechang[z]] == 1,

Sign[ratechang[z + delz]] == -1],

{If[

time1 == 0, time1 = z + delz, {time2 = (z + delz), Break[]}]}
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],

{z, 1*10^-8, 2*10^-8, delz}

],

pulseinterval = time2 - time1

}

chaoscalc :=

{sampac =
Table[acoutputfunction[t], {t, 1*10^-8, 2*10^-8, 1*10^-12}],

sampac = Flatten[sampac],
sampac = Sort[sampac, Greater],
samp1 = Extract[sampac, 1],
samp2 = Extract[sampac, 2],
samp3 = Extract[sampac, 3],
samp4 = Extract[sampac, 4],
samp5 = Extract[sampac, 5],
samp6 = Extract[sampac, 6],
samp7 = Extract[sampac, 183],
samp8 = Extract[sampac, 184],
samp9 = Extract[sampac, 185],
samp10 = Extract[sampac, 186],
samp11 = Extract[sampac, 194],
samp12 = Extract[sampac, 200],
avrg = ((samp1 + samp2 + samp3 + samp4 + samp5 + samp6 + samp7 +

samp8 + samp9 + samp10 + samp11 + samp12)/12),

If[incoun == 0, chaoslist = {{avrg, jloop, floop}},
chaoslist = Append[chaoslist, {avrg, jloop, floop}]]

}

scanpulse :=

{maxpulse,
intervalfinder,
If[incoun == 0, pulselist = {{maxfunc, pulseinterval, jloop}},
pulselist = Append[pulselist, {maxfunc, pulseinterval, jloop}]]
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}
maxpulse :=

{func = Table[pow[t], {t, 3*10^-8, 7*10^-8, 1*10^-12}];,
maxfunc = Max[func]
}

finishup :=

{Put[chaoslist, "chaosdata.cps"],
Put[pulselist, "pulsedata.cps"]
}

MultiRunge[h_, x0_, y0_, p0_] :=

{

f1[x_, y_, P_] = Extract[VectorX, 1],
f2[x_, y_, P_] = Extract[VectorX, 2],
f3[x_, y_, P_] = Extract[VectorX, 3], xresult = {{0, x0}},
yresult = {{0, y0}}, presult = {{0, p0}}, wx = x0, wy = y0,
wp = p0,

Do[

{

a1 = f1[wx, wy, wp],
a2 = f2[wx, wy, wp],
a3 = f3[wx, wy, wp],

b1 = f1[wx + ((h/2)*a1), wy + ((h/2)*a2), wp + ((h/2)*a3)],
b2 = f2[wx + ((h/2)*a1), wy + ((h/2)*a2), wp + ((h/2)*a3)],
b3 = f3[wx + ((h/2)*a1), wy + ((h/2)*a2), wp + ((h/2)*a3)],

c1 = f1[wx + ((h/2)*b1), wy + ((h/2)*b2), wp + ((h/2)*b3)],
c2 = f2[wx + ((h/2)*b1), wy + ((h/2)*b2), wp + ((h/2)*b3)],
c3 = f3[wx + ((h/2)*b1), wy + ((h/2)*b2), wp + ((h/2)*b3)],

d1 = f1[wx + ((h/2)*c1), wy + ((h/2)*c2), wp + ((h/2)*c3)],
d2 = f2[wx + ((h/2)*c1), wy + ((h/2)*c2), wp + ((h/2)*c3)],
d3 = f1[wx + ((h/2)*c1), wy + ((h/2)*c2), wp + ((h/2)*c3)],

wy = wy + ((h/6)*(a1 + (2*b1) + (2*c1) + d1)),
wx = wx + ((h/6)*(a2 + (2*b2) + (2*c2) + d2)),
wp = wp + ((h/6)*(a3 + (2*b3) + (2*c3) + d3)),
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t = (n*h),

xresult = Append[xresult, {t, wx}],
yresult = Append[yresult, {t, wy}],
presult = Append[presult, {t, wp}]

}, {n, 1, 80000}],

n1 = Interpolation[xresult],
n2 = Interpolation[yresult],
pow = Interpolation[presult]

}

WriteIndex[jloop_] :=

{stodat = {jminold, jloop, jstep, fmin, fmax, fstep},
fildrop = mywrkingdir <> "/index.cps",
Put[stodat, fildrop]
}

A C++ Runge-Kutta method
rungekuttasys.h
#ifndef _rungekuttasys_h
#define _rungekuttasys_h

#include "ap.h"

void solvesystemrungekutta(const double& x,
const double& x1,
const int& m,
const int& n,
ap::real_1d_array& y);

void solvesystemrungekuttastep(const double& x,
const double& h,
const int& n,
ap::real_1d_array& y);
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#endif

rungekuttasys.cpp

#include <stdafx.h>
#include "rungekuttasys.h"

void solvesystemrungekutta(const double& x,
const double& x1,
const int& m,
const int& n,
ap::real_1d_array& y)

{
double h;
int i;

for(i = 0; i <= m-1; i++)
{

solvesystemrungekuttastep(x+i*(x1-x)/m, (x1-x)/m, n, y);
}

}

void solvesystemrungekuttastep(const double& x,
const double& h,
const int& n,
ap::real_1d_array& y)

{
int i;
ap::real_1d_array yt;
ap::real_1d_array k1;
ap::real_1d_array k2;
ap::real_1d_array k3;
ap::real_1d_array k4;

yt.setbounds(1, n);
k1.setbounds(1, n);
k2.setbounds(1, n);
k3.setbounds(1, n);
k4.setbounds(1, n);
for(i = 1; i <= n; i++)
{
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k1(i) = h*f(i, x, y);
}
for(i = 1; i <= n; i++)
{

yt(i) = y(i)+0.5*k1(i);
}
for(i = 1; i <= n; i++)
{

k2(i) = h*f(i, x+h*0.5, yt);
}
for(i = 1; i <= n; i++)
{

yt(i) = y(i)+0.5*k2(i);
}
for(i = 1; i <= n; i++)
{

k3(i) = h*f(i, x+h*0.5, yt);
}
for(i = 1; i <= n; i++)
{

yt(i) = y(i)+k3(i);
}
for(i = 1; i <= n; i++)
{

k4(i) = h*f(i, x+h, yt);
}
for(i = 1; i <= n; i++)
{

y(i) = y(i)+(k1(i)+2.0*k2(i)+2.0*k3(i)+k4(i))/6;
}

}
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List of Attachments
This section contains a list of supple-

mentary documents that can be found at-
tached to this report. These include the
agenda and reports from the group meet-
ings and similar items.

• A3 version of the scale drawing (Fig-
ure 2.16).

• Minutes and Agenda for the meetings
held on;
� Tuesday 11th December, 2007

(Minutes only.)
� Monday 14th January, 2008
� Monday 21st January, 2008
� Thursday 31st January, 2008
� Friday 1st February, 2008
� Thursday 28th February, 2008
� Thursday 6th March, 2008
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