b-jet shape analysis using Monte-Carlo methods

Luke Pomfrey

Monday 9th March, 2009

Luke Pomfrey

Introduction

Comparison of generators and tunes

Tuning the quark masses in Pythia6

PARP(9x) tuning

Conclusion

▲UCL

Luke Pomfrey

Introduction : Project Aims and Objectives

- ▶ Investigate *b*-jet shapes using Monte-Carlo methods.
- Compare the output of several generators and tunes to actual CDF-II data.
- Attempt to tune a generator to better match the CDF data.

Luke Pomfrey

Introduction : Project Aims and Objectives

- ▶ Investigate *b*-jet shapes using Monte-Carlo methods.
- Compare the output of several generators and tunes to actual CDF-II data.
- Attempt to tune a generator to better match the CDF data.

Luke Pomfrey

Introduction : Project Aims and Objectives

- ▶ Investigate *b*-jet shapes using Monte-Carlo methods.
- Compare the output of several generators and tunes to actual CDF-II data.
- Attempt to tune a generator to better match the CDF data.

Figure: Monte Carlo, Monaco, the source of the Monte Carlo methods' name. A way to model complex physical situations that contain a degree of improbability using statistical sampling.

General procedure:

- 1. Define a domain of possible inputs.
- 2. Randomly generate inputs and perform a deterministic computation on them.
- 3. Aggregate the results of the inputs into a final result.

▲ 同 ▶ → 三 ▶

< ∃⇒

► Free parameters → Tuning

Luke Pomfrey

Figure: Monte Carlo, Monaco, the source of the Monte Carlo methods' name.

- A way to model complex physical situations that contain a degree of improbability using statistical sampling.
- ► General procedure:
 - 1. Define a domain of possible inputs.
 - 2. Randomly generate inputs and perform a deterministic computation on them.
 - 3. Aggregate the results of the inputs into a final result.

< 17 ▶

-∢ ≣ ▶

< ∃⇒

► Free parameters → Tuning

Luke Pomfrey

Figure: Monte Carlo, Monaco, the source of the Monte Carlo methods' name.

- A way to model complex physical situations that contain a degree of improbability using statistical sampling.
- General procedure:
 - 1. Define a domain of possible inputs.
 - 2. Randomly generate inputs and perform a deterministic computation on them.
 - 3. Aggregate the results of the inputs into a final result.

-∢ ≣⇒

< ∃⇒

► Free parameters → Tuning

Luke Pomfrey

Figure: Monte Carlo, Monaco, the source of the Monte Carlo methods' name.

- A way to model complex physical situations that contain a degree of improbability using statistical sampling.
- General procedure:
 - 1. Define a domain of possible inputs.
 - 2. Randomly generate inputs and perform a deterministic computation on them.
 - 3. Aggregate the results of the inputs into a final result.

-∢ ≣ ▶

< ∃⇒

► Free parameters → Tuning

Figure: Monte Carlo, Monaco, the source of the Monte Carlo methods' name.

- A way to model complex physical situations that contain a degree of improbability using statistical sampling.
- General procedure:
 - 1. Define a domain of possible inputs.
 - 2. Randomly generate inputs and perform a deterministic computation on them.
 - 3. Aggregate the results of the inputs into a final result.

< ∃ >

< ∃⇒

Tree parameters

Figure: Monte Carlo, Monaco, the source of the Monte Carlo methods' name.

- A way to model complex physical situations that contain a degree of improbability using statistical sampling.
- General procedure:
 - 1. Define a domain of possible inputs.
 - 2. Randomly generate inputs and perform a deterministic computation on them.
 - 3. Aggregate the results of the inputs into a final result.

< ∃⇒

< ∃ >

► Free parameters → Tuning.

Luke Pomfrey

Introduction : *b*-jets

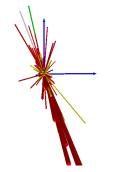


Figure: A *b*-jet event rendered using hepmcview.

< ∃⇒

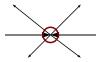
æ

▲ (四) ▶ (▲ 三) ▶

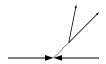
Luke Pomfrey

The displaced vertex method (simplified).

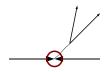
Luke Pomfrey


The displaced vertex method (simplified).

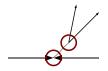
Luke Pomfrey


The displaced vertex method (simplified).

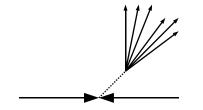
Luke Pomfrey


The displaced vertex method (simplified).

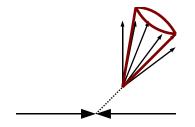
Luke Pomfrey


The displaced vertex method (simplified).

Luke Pomfrey


The displaced vertex method (simplified).

Luke Pomfrey


Introduction : Jet shapes

Luke Pomfrey

Introduction : Jet shapes

Luke Pomfrey

Introduction

Comparison of generators and tunes

Tuning the quark masses in Pythia6

PARP(9x) tuning

Conclusion

Luke Pomfrey

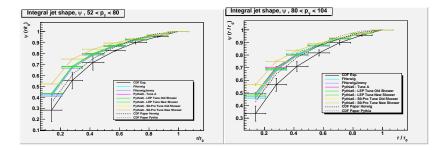
- ► Tune A
- LEP Tune (with old and new shower methods)
- S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only b-jet containing events be generated make a difference?

- Pythia6
 - Tune A
 - LEP Tune (with old and new shower methods)
 - S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only b-jet containing events be generated make a difference?

- Pythia6
 - Tune A
 - LEP Tune (with old and new shower methods)
 - S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only *b*-jet containing events be generated make a difference?

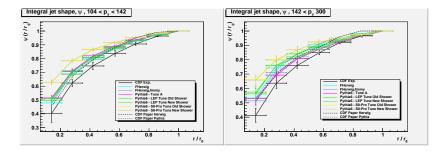
- Pythia6
 - Tune A
 - LEP Tune (with old and new shower methods)
 - S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only *b*-jet containing events be generated make a difference?

- Pythia6
 - Tune A
 - LEP Tune (with old and new shower methods)
 - S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only *b*-jet containing events be generated make a difference?

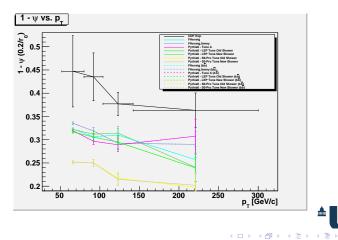


- Pythia6
 - Tune A
 - LEP Tune (with old and new shower methods)
 - S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only *b*-jet containing events be generated make a difference?

- Pythia6
 - Tune A
 - LEP Tune (with old and new shower methods)
 - S0-Pro Tune (with old and new shower methods)
- Herwig
- HerwigJimmy
- Does explicitly stating that only *b*-jet containing events be generated make a difference?


Comparison of generators and tunes : The generator comparison results

Luke Pomfrey


Comparison of generators and tunes : The generator comparison results

Luke Pomfrey

Comparison of generators and tunes : The generator comparison results

2

Luke Pomfrey

Introduction

Comparison of generators and tunes

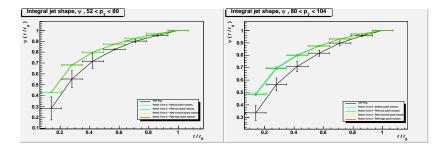
Tuning the quark masses in Pythia6

PARP(9x) tuning

Conclusion

Luke Pomfrey

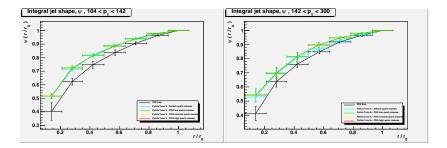
Tuning the quark masses in Pythia6 : Pythia6 default quark masses


Quark	PDG mass	Pythia6 mass
d	$5.04^{+0.96}_{-1.54}~{ m MeV}$	9.9 MeV
u	$2.55^{+0.75}_{-1.05}{ m MeV}$	5.6 MeV
s	$104^{+26}_{-34}~{ m MeV}$	199 MeV
с	$1.27^{+0.07}_{-0.11}~{ m GeV}$	1.23 GeV
b	$4.20^{+0.17}_{-0.07}~{ m GeV}$	4.17 GeV
t	$171.2\pm2.1~{ m GeV}$	165 GeV

3

▲□ → ▲ □ → ▲ □ →

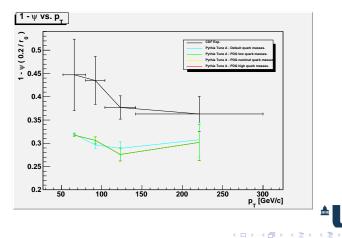
Luke Pomfrey


Tuning the quark masses in Pythia6 : Quark mass tuning results

2

Luke Pomfrey

Tuning the quark masses in Pythia6 : Quark mass tuning results



2

- 4 回 > - 4 回 > - 4 回 >

Luke Pomfrey

Tuning the quark masses in Pythia6 : Quark mass tuning results

2

Luke Pomfrey

Introduction

Comparison of generators and tunes

Tuning the quark masses in Pythia6

PARP(9x) tuning

Conclusion

Luke Pomfrey

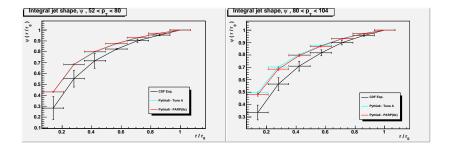
PARP(9x) tuning : The PARP(9x) parameters

- PARP(9x) control energy partitioning in hadron or resolved-photon remnant.
- PARP(91), PARP(94), PARP(95), PARP(96), PARP(97), PARP(98).
- Specify the k and χ factors of the energy partitioning function (k + 1)(1 − χ)^k in various situations.

Luke Pomfrey

PARP(9x) tuning : The PARP(9x) parameters

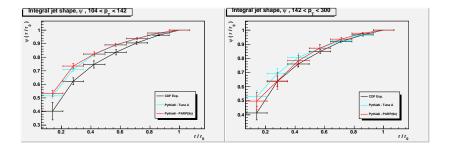
- PARP(9x) control energy partitioning in hadron or resolved-photon remnant.
- PARP(91), PARP(94), PARP(95), PARP(96), PARP(97), PARP(98).
- Specify the k and χ factors of the energy partitioning function (k + 1)(1 − χ)^k in various situations.



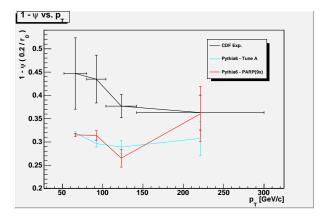
Luke Pomfrey

PARP(9x) tuning : The PARP(9x) parameters

- PARP(9x) control energy partitioning in hadron or resolved-photon remnant.
- PARP(91), PARP(94), PARP(95), PARP(96), PARP(97), PARP(98).
- Specify the k and χ factors of the energy partitioning function (k + 1)(1 − χ)^k in various situations.


PARP(9x) tuning : PARP(9x) tuning results

■UCL


Luke Pomfrey

PARP(9x) tuning : PARP(9x) tuning results

Luke Pomfrey

PARP(9x) tuning : PARP(9x) tuning results

2

- 4 聞 と 4 注 と 4 注 と

Luke Pomfrey

Introduction

Comparison of generators and tunes

Tuning the quark masses in Pythia6

PARP(9x) tuning

Conclusion

▲UCL

Luke Pomfrey

- In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ▶ The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

◆□→ ◆ 注→ ◆ 注→

- In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ▶ The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

◆□→ ◆ 注→ ◆ 注→

- In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ▶ The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

米部 ・モー・ ・ヨ・

- ► In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ▶ The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

(本部) (本語) (本語)

- ► In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ► The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

A (1) > A (1) > A

- ∢ ≣ →

- ► In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ▶ The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

Image: A math a math

< ∃ >

- ► In all cases the jets produced in Monte-Carlo are too narrow.
- Explicitly selecting the jet flavours to be simulated doesn't affect the results.
- Tunes aren't necessarily good for different analyses.
- ▶ The latest tune (S0-Pro) is the worst for this analysis.
- As expected, the Jimmy multi-parton interaction add-on for Herwig produces better results than Herwig alone.
- For this analysis, the old and new shower methods in Pythia6 produce largely similar results.

∃ ► < ∃ ►</p>

Need more statistics for the quark mass investigation and the PARP(9x) tune.

• Errors scale $\propto \frac{1}{\sqrt{N}}$.

- ▶ Need to check that PARP(9x) tune doesn't only affect this analysis, *i.e.* check against CDF-II min-bias data.
- Beyond the scope of this project, investigate Higgs mass via b-jet analysis.
- ► Compare with newer C++ generators Pythia8 and Herwig++.

- Need more statistics for the quark mass investigation and the PARP(9x) tune.
- Errors scale $\propto \frac{1}{\sqrt{N}}$.
- Need to check that PARP(9x) tune doesn't only affect this analysis, *i.e.* check against CDF-II min-bias data.
- Beyond the scope of this project, investigate Higgs mass via b-jet analysis.
- ► Compare with newer C++ generators Pythia8 and Herwig++.

- Need more statistics for the quark mass investigation and the PARP(9x) tune.
- Errors scale $\propto \frac{1}{\sqrt{N}}$.
- Need to check that PARP(9x) tune doesn't only affect this analysis, *i.e.* check against CDF-II min-bias data.
- Beyond the scope of this project, investigate Higgs mass via b-jet analysis.
- Compare with newer C++ generators Pythia8 and Herwig++.

- Need more statistics for the quark mass investigation and the PARP(9x) tune.
- Errors scale $\propto \frac{1}{\sqrt{N}}$.
- Need to check that PARP(9x) tune doesn't only affect this analysis, *i.e.* check against CDF-II min-bias data.
- Beyond the scope of this project, investigate Higgs mass via b-jet analysis.
- ► Compare with newer C++ generators Pythia8 and Herwig++.